Skip to main content

Advertisement

Log in

Microstructure, Mechanical, and Electrochemical Corrosion Performance of Ti/HA (Hydroxyapatite) Particles Reinforced Mg-3Zn Squeeze Casted Composites

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This research presents a novel approach to overcome the stress shielding effect and non-degradability commonly observed in metallic implants, which often require revision surgery. The study introduces a hybrid metal/ceramic (Ti/HA) reinforcement within the Mg-3Zn binary alloy matrix fabricated using the squeeze casting technique. The alloy matrix incorporates 1 wt% Ti and varying weight percentages (0.5, 1, and 1.5 wt%) of hydroxyapatite (HA). Microstructure analysis revealed significant grain refinement in the alloy upon adding the hybrid reinforcement. Phase analysis using XRD confirmed the presence of Mg-Zn intermetallic phases and corresponding reinforcement phases. Vickers microhardness testing demonstrated a 14.4% (89 HV) increase in hardness for the hybrid composite with 1Ti/1.5HA compared to the unreinforced alloy and other composites. Compressive testing revealed enhanced mechanical properties in the hybrid composites. The 1Ti/1.5 HA hybrid composite displayed a 12% (121 MPa) increase in compressive yield strength (CYS) compared to the alloy, while the 1Ti/1HA hybrid composite exhibited an impressive 22.5% (217 MPa) increment in compressive strength. Corrosion performance evaluation in a phosphate-buffered saline (PBS) environment indicated that the 1Ti/1.5 HA hybrid composites demonstrated comparable corrosion performance to the unreinforced alloy, with a corrosion density of 4.53 × 10−5 μA/cm2 and a linear polarization resistance of 893 ohms. Based on the findings, the Mg-3Zn alloy with 1Ti/1.5 HA hybrid reinforcement emerges as a promising material for load-bearing biodegradable implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S.P. Ramachandran Krishnan, Biodegradable magnesium metal matrix composites for biomedical implants: synthesis, mechanical performance, and corrosion behavior -a review. J. Market. Res. 20, 650–670 (2022). https://doi.org/10.1016/j.jmrt.2022.06.178

    Article  CAS  Google Scholar 

  2. M.H.-A. Murad Ali, Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties. J. Alloy. Compd. 792, 1162–1190 (2019). https://doi.org/10.1016/j.jallcom.2019.04.080

    Article  CAS  Google Scholar 

  3. M.A. Hussein, M.A. Azeem, A.M. Kumar, N.M. Emara, Processing and in vitro corrosion analysis of sustainable and economical eggshell reinforced Mg and Mg-Zr matrix composite for biomedical applications. Mater. Today Commun. 32, 103944 (2022). https://doi.org/10.1016/j.mtcomm.2022.103944

    Article  CAS  Google Scholar 

  4. D.L. Yan Huang, Fabrication and characterization of a biodegradable Mg–2Zn–0.5Ca/1β-TCP composite. Mater. Sci. Eng., C 54, 120–132 (2015). https://doi.org/10.1016/j.msec.2015.05.035

    Article  CAS  Google Scholar 

  5. H.Z. Tao Li, Microstructure, mechanical properties and in vitro degradation behavior of a novel biodegradable Mg–1.5Zn–0.6Zr–0.2Sc alloy. J. Mater. Sci. Technol. 31(7), 744–750 (2015). https://doi.org/10.1016/j.jmst.2015.02.001

    Article  CAS  Google Scholar 

  6. R.M. Satish Jaiswal, Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. J. Mech. Behav. Biomed. Mater. 78, 442–454 (2017). https://doi.org/10.1016/j.jmbbm.2017.11.030

    Article  CAS  PubMed  Google Scholar 

  7. L.D. Yang Min, Microstructure and properties of Mg-3Zn- 02Ca alloy for biomedical application. Rare Metal Mater. Eng. 47(1), 0093–0098 (2018). https://doi.org/10.1016/S1875-5372(18)30078-X

    Article  Google Scholar 

  8. D.L. Guangyi Lin, Preparation and characterization of biodegradable Mg-Zn-Ca/MgO nanocomposites for biomedical applications. Mater. Charact. 144, 120–130 (2018). https://doi.org/10.1016/j.matchar.2018.06.028

    Article  CAS  Google Scholar 

  9. G.X. Debao Liu, Fabrication of biodegradable HA/Mg-Zn-Ca composites and the impact of heterogeneous microstructure on mechanical properties, in vitro degradation and cytocompatibility. Bioelectrochemistry 129, 106–115 (2019). https://doi.org/10.1016/j.bioelechem.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  10. S.N. Rodzi, H. Zuhailawati, B.K. Dhindaw, Mechanical and degradation behaviour of biodegradable magnesium–zinc/hydroxyapatite composite with different powder mixing techniques. J. Magn. Alloys 7, 566–576 (2019). https://doi.org/10.1016/j.jma.2019.11.003

    Article  CAS  Google Scholar 

  11. B.E. Sahar Mokhtari, Synthesis and characterization of biodegradable AZ31/calcium phosphate glass composites for orthopedic applications. Adv. Compos. Hybrid Mater. 3, 390–401 (2020). https://doi.org/10.1007/s42114-020-00177-x

    Article  CAS  Google Scholar 

  12. N. Pulido-González, B. Torres, P. Rodrigo, N. Hort, J. Rams, Microstructural, mechanical and corrosion characterization of an as-cast Mg–3Zn–0.4Ca alloy for biomedical applications. J. Magn. Alloys 8(2), 510–522 (2020). https://doi.org/10.1016/j.jma.2020.02.007

    Article  CAS  Google Scholar 

  13. R.K. Pooja Rai, To develop biodegradable Mg-based metal ceramic composites as bone implant material. Bull. Mater. Sci. 43, 227 (2020). https://doi.org/10.1007/s12034-020-02191-7

    Article  CAS  Google Scholar 

  14. Y. Hu, X. Guo, Y. Qiao, X. Wang, Q. Lin, Preparation of medical Mg–Zn alloys and the effect of different zinc contents on the alloy Biomater. Synthes. Characterization 33, 9 (2022). https://doi.org/10.1007/s10856-021-06637-0

    Article  CAS  Google Scholar 

  15. Y. Leiting, S. Lyu, Y. Chen, C. You, Y. Zhao, M. Chen, Simultaneously improving the mechanical property and corrosion resistance of extruded biomedical Mg–3Zn alloy by forming in-situ MgO. J. Mater. Res. Technol. 18, 2977–2992 (2022). https://doi.org/10.1016/j.jmrt.2022.03.173

    Article  CAS  Google Scholar 

  16. S. Ouyang, Y. Liu, Q. Huang, Z. Gan, H. Tang, Effect of composition on in vitro degradability of Ti–Mg metal-metal composites. Mater. Sci. Eng.: C 107, 110327 (2020). https://doi.org/10.1016/j.msec.2019.110327

    Article  CAS  Google Scholar 

  17. A.K. Khanra, Microstructure and mechanical properties of Mg-HAP composites. Bull. Mater. Sci. 33, 43–47 (2010). https://doi.org/10.1007/s12034-010-0006-z

    Article  CAS  Google Scholar 

  18. Y.C.-D. Xiaopeng Wang, Effects of Sn content on the microstructure, mechanical properties and biocompatibility of Ti–Nb–Sn/hydroxyapatite biocomposites synthesized by powder metallurgy. Mater. Des. 49, 511–519 (2013). https://doi.org/10.1016/j.matdes.2013.01.012

    Article  CAS  Google Scholar 

  19. S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg–Ti composite. J. Magn. Alloys 2(1), 13–19 (2014). https://doi.org/10.1016/j.jma.2014.03.001

    Article  CAS  Google Scholar 

  20. J. Sun, M. Chen, The effect of nano-hydroxyapatite on the microstructure and properties of Mg–3Zn–05Zr alloy. J. Compos. Mater. 48(7), 825–834 (2014). https://doi.org/10.1177/0021998313478259

    Article  CAS  Google Scholar 

  21. B. Chen, K.Y. Yin, T.F. Lu, B.Y. Sun, Q. Dong, J.X. Zheng, C. Lu, Z.C. Li, AZ91 magnesium alloy/porous hydroxyapatite composite for potential application in bone repair. J. Mater. Sci. Technol. 32, 858–864 (2016). https://doi.org/10.1016/j.jmst.2016.06.010

    Article  CAS  Google Scholar 

  22. A.A. Reza Rahmany-Gorji, Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites. Mater. Sci. Eng. A 674, 413–418 (2016). https://doi.org/10.1016/j.msea.2016.07.057

    Article  CAS  Google Scholar 

  23. W.L. Zeqin Cui, Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering. Mater. Charact. 151, 620–631 (2019). https://doi.org/10.1016/j.matchar.2019.03.048

    Article  CAS  Google Scholar 

  24. R. Radha, D. Sreekanth, Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications. J. Magn. Alloys 8(2), 452–460 (2020). https://doi.org/10.1016/j.jma.2019.05.010

    Article  CAS  Google Scholar 

  25. X. Song, P. Bayati, M. Gupta, M. Elahinia, M. Haghshenas, Fracture of magnesium matrix nanocomposites - a review. Int. J. Lightweight Mater. Manufact. 4(1), 67–98 (2021). https://doi.org/10.1016/j.ijlmm.2020.07.002

    Article  CAS  Google Scholar 

  26. B. Vinod, M. A., Dry sliding wear mechanisms of incorporated hydroxyapatite waste materials: synthesis and characterization of magnesium hybrid composites. Trans. Indian Inst. Met. 73, 3037–3057 (2020). https://doi.org/10.1007/s12666-020-02103-7

    Article  CAS  Google Scholar 

  27. S.J. Huang, M. Subramani, C.C. Chiang, Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method. Compos. Commun. 25, 100772 (2021). https://doi.org/10.1016/j.coco.2021.100772

    Article  Google Scholar 

  28. G.L. Yunting Guo, The microstructure, mechanical properties, corrosion performance and biocompatibility of hydroxyapatite reinforced ZK61 magnesium-matrix biological composite. J. Mech. Behav. Biomed. Mater. 123, 104759 (2021). https://doi.org/10.1016/j.jmbbm.2021.104759

    Article  CAS  PubMed  Google Scholar 

  29. D. Ahmadkhaniha, M. S., Corrosion behavior of magnesium and magnesium–hydroxyapatite composite fabricated by friction stir processing in Dulbecco’s phosphate buffered saline. Corros. Sci. 104, 319–329 (2016). https://doi.org/10.1016/j.corsci.2016.01.002

    Article  CAS  Google Scholar 

  30. H. Zengin, Role of Sr in microstructure, hardness and biodegradable behavior of cast Mg–2Zn–2Ca–0.5Mn (ZXM220) alloy for potential implant application. Int. J. Met. 14(2), 442–453 (2020). https://doi.org/10.1007/s40962-019-00366-5

    Article  CAS  Google Scholar 

  31. H. Mohammadi, M. Emamy, Z. Hamnabard, The statistical analysis of tensile and compression properties of the as-cast AZ91-X%B4C composites. Int. J. Met. 14(2), 505–517 (2020). https://doi.org/10.1007/s40962-019-00377-2

    Article  CAS  Google Scholar 

  32. J. Bian et al., Research on the effect of Sr and Zr on microstructure and properties of Mg–4Zn alloy. Int. J. Met. 15(4), 1483–1498 (2021). https://doi.org/10.1007/s40962-021-00576-w

    Article  CAS  Google Scholar 

  33. M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, H. Ghayour, Microstructure, mechanical properties, and in-vitro biocompatibility of nano-NiTi reinforced Mg–3Zn-05 Ag alloy: prepared by mechanical alloying for implant applications. Compos. Part B: Eng. 190, 107947 (2020). https://doi.org/10.1016/j.compositesb.2020.107947

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors would like to acknowledge the Department of Manufacturing Engineering, FEAT, Annamalai University, Chidambaram, for providing facilities to carry over this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vignesh.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 340 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, P., Ramanathan, S., Ashokkumar, M. et al. Microstructure, Mechanical, and Electrochemical Corrosion Performance of Ti/HA (Hydroxyapatite) Particles Reinforced Mg-3Zn Squeeze Casted Composites. Inter Metalcast 18, 1348–1360 (2024). https://doi.org/10.1007/s40962-023-01114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01114-6

Keywords

Navigation