Skip to main content
Log in

Improvements on the Mechanical Properties of Al 6063 Alloy by Microalloying with Cu and Cr Elements

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Microalloying is an effective method to improve the mechanical properties of 6063 Al–Mg–Si alloy. Here, in this work, the effects of trace Cu (0.14 wt.%) and Cr (0.10 wt.%.) additions on the microstructure and mechanical properties of 6063 Al–Mg–Si alloy were studied. The results show that the additions of two elements can cause significant age-hardening effects, and the yield and tensile strengths of the alloys are significantly increased after T6 heat treatment. Further, it is found that the Cu and Cr additions show different strengthening mechanisms in the alloy. Cu addition leads to a finer and denser distribution of the main strengthening phases in the peak aging of the alloy, as well as a large number density of the precipitated phases, resulting in an increase in the dislocation density of the alloy during strain and hindering the dislocation movement. However, Cr addition acts as an inhibitor of grain growth and results in grain refinement, which also increases the hindrance of dislocation movement during the plastic deformation of the alloy, resulting in an increase in the dislocation density, thereby strengthening the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

The date presented in this study are available within the article.

References

  1. K. Majchrowicz, Z. Pakieła, W. Chrominski, M. Kulczyk, Enhanced strength an electrical conductivity of ultrafine-grained Al–Mg–Si alloy processed by hydrostatic extrusion. Mater Charact 135, 104–114 (2018). https://doi.org/10.1016/j.matchar.2017.11.023

    Article  CAS  Google Scholar 

  2. M. Yang, H. Chen, A. Orekhov et al., Quantified contribution of β″ and β′ precipitates to the strengthening of an aged Al–Mg–Si alloy. Mater Sci Eng A 774, 138776 (2020). https://doi.org/10.1016/j.msea.2019.138776

    Article  CAS  Google Scholar 

  3. Y. Lai, W. Fan, M. Yin, C. Wu, J. Chen, Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al–Mg–Si alloys. J Mater Sci Technol 41, 127–138 (2020). https://doi.org/10.1016/j.jmst.2019.11.001

    Article  CAS  Google Scholar 

  4. G. Edwards, K. Stiller, G. Dunlop, APFIM investigation of fine-scale precipitation in aluminium alloy 6061. Appl Surf Sci 76, 219–225 (1994). https://doi.org/10.1016/0169-4332(94)90346-8

    Article  Google Scholar 

  5. M.X. Zhang, C. Wang, S.Y. Zhang, X. Liu, X. Wang, M.W. Ren, H.Y. Wang, Enhanced aging precipitation behavior and mechanical properties of 6022 Al–Mg–Si alloy with Zr addition. Mater Sci Eng A 840, 142957 (2022). https://doi.org/10.1016/j.msea.2022.142957

    Article  CAS  Google Scholar 

  6. M. Van Huis, J. Chen, M. Sluiter, H. Zandbergen, Phase stability and structural features of matrix-embedded hardening precipitates in Al–Mg–Si alloys in the early stages of evolution. Acta Mater 55, 2183–2199 (2007). https://doi.org/10.1016/j.actamat.2006.11.019

    Article  CAS  Google Scholar 

  7. M. Van Huis, J. Chen, H. Zandbergen, M. Sluiter, Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al–Mg–Si alloys in the late stages of evolution. Acta Mater 54, 2945–2955 (2006). https://doi.org/10.1016/j.actamat.2006.02.034

    Article  CAS  Google Scholar 

  8. D. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog Mater Sci 49, 389–410 (2004). https://doi.org/10.1016/s0079-6425(03)00031-8

    Article  CAS  Google Scholar 

  9. M. Zandbergen, A. Cerezo, G. Smith, Study of precipitation in Al–Mg–Si Alloys by atom probe tomography II Influence of Cu additions. Acta Mater 101, 149–158 (2015). https://doi.org/10.1016/j.actamat.2015.08.018

    Article  CAS  Google Scholar 

  10. T. Saito, S. Muraishi, C.D. Marioara, S.J. Andersen, J. Røyset, R. Holmestad, The effects of low Cu additions and predeformation on the precipitation in a 6060 Al–Mg–Si alloy. Metall Mater Trans A 44, 4124–4135 (2013). https://doi.org/10.1007/s11661-013-1754-3

    Article  CAS  Google Scholar 

  11. T. Saito, C.D. Marioara, J. Røyset, K. Marthinsen, R. Holmestad, The effects of quench rate and pre-deformation on precipitation hardening in Al–Mg–Si alloys with different Cu amounts. Mater Sci Eng A 609, 72–79 (2014). https://doi.org/10.1016/j.msea.2014.04.094

    Article  CAS  Google Scholar 

  12. L. Lodgaard, N. Ryum, Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng A 283, 144–152 (2000). https://doi.org/10.1016/s0921-5093(00)00734-6

    Article  Google Scholar 

  13. X. Qian, N. Parson, X.G. Chen, Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing. J Mater Sci Technol 52, 189–197 (2020). https://doi.org/10.1016/j.jmst.2020.04.015

    Article  CAS  Google Scholar 

  14. J. Rakhmonov, K. Liu, P. Rometsch, N. Parson, X.G. Chen, Effects of Al (MnFe) Si dispersoids with different sizes and number densities on microstructure and ambient/elevated-temperature mechanical properties of extruded Al–Mg–Si AA6082 alloys with varying Mn content. J Alloys Compd 861, 157937 (2021). https://doi.org/10.1016/j.jallcom.2020.157937

    Article  CAS  Google Scholar 

  15. K. Teichmann, C.D. Marioara, K.O. Pedersen, K. Marthinsen, The effect of simultaneous deformation and annealing on the precipitation behaviour and mechanical properties of an Al–Mg–Si alloy. Mater Sci Eng A 565, 228–235 (2013). https://doi.org/10.1016/j.msea.2012.12.042

    Article  CAS  Google Scholar 

  16. K. Teichmann, C.D. Marioara, S.J. Andersen, K. Marthinsen, TEM study of β′ precipitate interaction mechanisms with dislocations and β′ interfaces with the aluminium matrix in Al–Mg–Si alloys. Mater Charact 75, 1–7 (2013). https://doi.org/10.1016/j.matchar.2012.10.003

    Article  CAS  Google Scholar 

  17. K. Misumi, K. Kaneko, T. Nishiyama et al., Three-dimensional characterization of interaction between β″ precipitate and dislocation in Al–Mg–Si alloy. J Alloys Compd 600, 29–33 (2014). https://doi.org/10.1016/j.jallcom.2014.02.059

    Article  CAS  Google Scholar 

  18. N.S. De Vincentis, A. Kliauga, M. Ferrante, M. Avalos, H.G. Brokmeier, R.E. Bolmaro, Evaluation of microstructure anisotropy on room and medium temperature ECAP deformed F138 steel. Mater Charact 107, 98–111 (2015). https://doi.org/10.1016/j.matchar.2015.06.035

    Article  CAS  Google Scholar 

  19. R. Guemini, A. Boubertakh, G.W. Lorimer, Study of the recrystallization process of AlMgSi alloys containing transition elements. J Alloys Compd 486, 451–457 (2009). https://doi.org/10.1016/j.jallcom.2009.06.207

    Article  CAS  Google Scholar 

  20. B. Mirzakhani, Y. Payandeh, Combination of sever plastic deformation and precipitation hardening processes affecting the mechanical properties in Al–Mg–Si alloy. Mater Des 68, 127–133 (2015). https://doi.org/10.1016/j.matdes.2014.12.011

    Article  CAS  Google Scholar 

  21. A.H. Baghdadi, A. Rajabi, N.F.M. Selamat, Z. Sajuri, M.Z. Omar, Effect of post-weld heat treatment on the mechanical behavior and dislocation density of friction stir welded Al6061. Mater Sci Eng A 754, 728–734 (2019). https://doi.org/10.1016/j.msea.2019.03.017

    Article  CAS  Google Scholar 

  22. I.F. Mohamed, T. Masuda, S. Lee et al., Strengthening of A2024 alloy by high-pressure torsion and subsequent aging. Mater Sci Eng A 704, 112–118 (2017). https://doi.org/10.1016/j.msea.2017.07.083

    Article  CAS  Google Scholar 

  23. S. Zhang, X. Luo, G. Zheng, N. Zhai, Y. Yang, P. Li, Effect of cryorolling and ageing on the microstructure and mechanical properties of Al 7085 alloy. Mater Sci Eng A 832, 142482 (2022). https://doi.org/10.1016/j.msea.2021.142482

    Article  CAS  Google Scholar 

  24. F. Bai, Y. Dong, L. Xie et al., Effect of pre-existing nuclei on microstructure and magnetic properties of high Bs FINEMET-like nanocrystalline alloys. J Mater Sci 56, 9254–9262 (2021). https://doi.org/10.1007/s10853-021-05861-x

    Article  CAS  Google Scholar 

  25. Y. Weng, L. Ding, Z. Zhang et al., Effect of Ag addition on the precipitation evolution and interfacial segregation for Al–Mg–Si alloy. Acta Mater 180, 301–316 (2019). https://doi.org/10.1016/j.actamat.2019.09.015

    Article  CAS  Google Scholar 

  26. M. Zandbergen, Q. Xu, A. Cerezo, G. Smith, Study of precipitation in Al–Mg–Si alloys by atom probe tomography I. microstructural changes as a function of ageing temperature. Acta Mater 101, 136–148 (2015). https://doi.org/10.1016/j.actamat.2015.08.017

    Article  CAS  Google Scholar 

  27. L.L. Song, S. Liu, X. Mao, A new method for fast statistical measurement of interfacial misfit strain around nano-scale semi-coherent particles. RSC Adv 7, 28506–28512 (2017). https://doi.org/10.1039/C7RA05079H

    Article  CAS  Google Scholar 

  28. V. Vaithyanathan, C. Wolverton, L. Chen, Multiscale modeling of θ′ precipitation in Al–Cu binary alloys. Acta Mater 52, 2973–2987 (2004). https://doi.org/10.1016/j.actamat.2004.03.001

    Article  CAS  Google Scholar 

  29. R. Baker, D. Brandon, J. Nutting, The growth of precipitates. Philos Mag 4, 1339–1345 (1959). https://doi.org/10.1080/14786435908233369

    Article  CAS  Google Scholar 

  30. M.J. Hÿtch, J.L. Putaux, J.M. Pénisson, Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423, 270–273 (2003). https://doi.org/10.1038/nature01638

    Article  CAS  PubMed  Google Scholar 

  31. J.K. Sunde, C.D. Marioara, A.T. van Helvoort, R. Holmestad, The evolution of precipitate crystal structures in an Al–Mg–Si(–Cu) alloy studied by a combined HAADF-STEM and SPED approach. Mater Charact 142, 458–469 (2018). https://doi.org/10.1016/j.matchar.2018.05.031

    Article  CAS  Google Scholar 

  32. Orowan E (1948) Symposium on internal stresses in metals and alloys. Institute of Metals, London 451. https://doi.org/10.1016/0016-0032(49)90639-0

  33. X. Wang, P.K. Ma, Z.Y. Meng, S.Y. Zhang, X. Liu, C. Wang, H.Y. Wang, Effect of trace Cr alloying on centerline segregations in sub-rapid solidified Al–Mg–Si (AA6061) alloys fabricated by twin-roll casting. Mater Sci Eng A 825, 141896 (2021). https://doi.org/10.1016/j.msea.2021.141896

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Natural Science Foundation of Liaoning Province (No: 2022-BS-181) and the Scientific Research Funding Project of Liaoning Education Department (No: LJKZ0118).

Author information

Authors and Affiliations

Authors

Contributions

Xiangchen Meng was involved in writing—original draft preparation, investigation, and visualization. Wei Zhang contributed to methodology, writing—review and editing, and funding acquisition. Yuqi Ma was involved in software and formal analysis. Qingchun Xiang contributed to conceptualization and resources. Yinglei Ren was involved in data curation and supervision. Keqiang Qiu contributed to project administration and writing—review and editing.

Corresponding authors

Correspondence to Wei Zhang or Qingchun Xiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Zhang, W., Ma, Y. et al. Improvements on the Mechanical Properties of Al 6063 Alloy by Microalloying with Cu and Cr Elements. Inter Metalcast 18, 1309–1317 (2024). https://doi.org/10.1007/s40962-023-01110-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01110-w

Keywords

Navigation