Skip to main content
Log in

Effect of Nd Addition on the Microstructure and Cyclic Oxidation Behavior of NiAl–Cr(Mo) Eutectic Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effect of a minor amount of rare-earth element Nd addition (0.1 at%) on the microstructural properties, microhardness, and cyclic oxidation resistance of NiAl–Cr(Mo) alloy is investigated in detail. The microstructure of investigated alloys is composed of NiAl-based dendrites and a eutectic mixture whose components are NiAl and Cr(Mo) phases. The minor amount of Nd addition refines the microstructure and increases the microhardness considerably. The results of the cyclic oxidation tests reveal that the surface scales of both alloys are mainly consisted of α-Al2O3 and little amount of Cr2O3. A Cr(Mo)-rich layer is observed in the metal/oxide interface. With Nd addition, the oxidation resistance of Ni–33Al–31Cr–3Mo alloy is strongly improved. The Nd-added alloy exhibits lower oxidation mass gain and increased scale adherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. K.S. Chan, The fracture toughness of niobium-based, in situ composites. Metall. and Mater. Trans. A. 27, 2518–2531 (1996)

    Article  Google Scholar 

  2. A. Misra, R. Gibala, Plasticity in multiphase intermetallics. Intermetallics 8, 1025–1034 (2000)

    Article  CAS  Google Scholar 

  3. R.D. Noebe, R.R. Bowman, M.V. Nathal, Physical and mechanical properties of the B2 compound NiAl. Int. Mater. Rev. 38, 193–232 (1993)

    Article  CAS  Google Scholar 

  4. Z. Shang, Q. Zhang, J. Shen, H. Bai, X. Dong, W. Bai, L. Zhong, G. Liu, Y. Xu, Effects of Nb/Ti additions and heat treatment on the microstructure evolution and hardness of as-cast and directionally solidified NiAl–Cr (Mo) alloy. J. Market. Res. 10, 905–915 (2021)

    CAS  Google Scholar 

  5. J. Guo, L. Sheng, Y. Tian, L. Zhou, H. Ye, Effect of Ho on the microstructure and compressive properties of NiAl-based eutectic alloy. Mater. Lett. 62, 3910–3912 (2008)

    Article  CAS  Google Scholar 

  6. L. Wang, J. Shen, Z. Shang, J. Zhang, J. Chen, H. Fu, Effect of Dy on the microstructures of directionally solidified NiAl–Cr (Mo) hypereutectic alloy at different withdrawal rates. Intermetallics 44, 44–54 (2014)

    Article  CAS  Google Scholar 

  7. G. Zhang, H. Zhang, J. Guo, Improvement of cyclic oxidation resistance of a NiAl-based alloy modified by Dy. Surf. Coat. Technol. 201, 2270–2275 (2006)

    Article  CAS  Google Scholar 

  8. D. Miracle, Overview No. 104 the physical and mechanical properties of NiAl. Acta Metall. et Mater. 41, 649–684 (1993)

    Article  CAS  Google Scholar 

  9. L. Wang, J. Shen, Effect of heat treatment on the microstructure and elevated temperature tensile property of Fe-doped NiAl–Cr (Mo)–(Hf, Dy) eutectic alloy. Mater. Sci. Eng. A 654, 177–183 (2016)

    Article  CAS  Google Scholar 

  10. H. Li, J. Guo, K. Huai, H. Ye, Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy. J. Cryst. Growth 290, 258–265 (2006)

    Article  CAS  Google Scholar 

  11. L.-Y. Sheng, Y. Fang, T.-F. Xi, Y.-F. Zheng, J.-T. Guo, Microstructure and room temperature mechanical properties of NiAl–Cr (Mo)–(Hf, Dy) hypoeutectic alloy prepared by injection casting. Trans. Nonferrous Metals Soc. China 23, 983–990 (2013)

    Article  CAS  Google Scholar 

  12. L. Zheng, L. Sheng, Y. Qiao, Y. Yang, C. Lai, Influence of Ho and Hf on the microstructure and mechanical properties of NiAl and NiAl-Cr (Mo) eutectic alloy. Mater. Res. Expr. 6, 046502 (2019)

    Article  Google Scholar 

  13. J. Peng, X. Fang, Z. Qu, J. Wang, Isothermal oxidation behavior of NiAl and NiAl-(Cr, Mo) eutectic alloys. Corros. Sci. 151, 27–34 (2019)

    Article  CAS  Google Scholar 

  14. H. Grabke, Oxidation of NiAl and FeAl. Intermetallics 7, 1153–1158 (1999)

    Article  CAS  Google Scholar 

  15. E. George, C. Liu, Brittle fracture and grain boundary chemistry of microalloyed NiAl. J. Mater. Res. 5, 754–762 (1990)

    Article  CAS  Google Scholar 

  16. H.J. Grabke, M.W. Brumm, B. Wagemann, The oxidation of NiAl. Mater. Corros.—Werkst. und Korros. 47, 675–677 (1996). https://doi.org/10.1002/maco.19960471203

    Article  CAS  Google Scholar 

  17. M. Yildirim, M.S. Atas, M.V. Akdeniz, A.O. Mekhrabov, Effect of Y addition on the structural properties and oxidation behavior of Fe60Al40-nYn Alloys (n = 1, 3, and 5 at%). Mater. High Temp. 39, 220–230 (2022)

    Article  CAS  Google Scholar 

  18. M.S. Atas, M. Yildirim, Morphological development, coarsening, and oxidation behavior of Ni-Al-Nb superalloys. J. Mater. Eng. Perform. 29, 4421–4434 (2020)

    Article  CAS  Google Scholar 

  19. M.S. Atas, M. Yildirim, Temporal evolution, coarsening behavior and oxidation resistance of Ni–15Al superalloy. J. Alloy. Compd. 809, 151784 (2019)

    Article  CAS  Google Scholar 

  20. A. Demirel, E.C. Cetin, A. Karakus, M.S. Atas, M. Yildirim, Microstructural evolutions and oxidation behavior of Fe-4Cr-6Ti ferritic alloy with Fe2Ti laves phase precipitates. Arch. Metall. Mater. 67, 827–836 (2022). https://doi.org/10.24425/amm.2022.139672

    Article  CAS  Google Scholar 

  21. M.S. Atas, M. Yildirim, Structural properties and cyclic oxidation behavior of NiAlY superalloys. Kov. Mater.—Metall. Mater. 60, 281–292 (2022). https://doi.org/10.31577/km.2022.5.281

    Article  CAS  Google Scholar 

  22. L. Sheng, L. Wang, T. Xi, Y. Zheng, H. Ye, Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr (Mo, Hf) eutectic alloys. Mater. Des. 32, 4810–4817 (2011)

    Article  CAS  Google Scholar 

  23. M. Yildirim, M.V. Akdeniz, A.O. Mekhrabov, Microstructural evolution and room-temperature mechanical properties of as-cast and heat-treated Fe50Al50−nNbn alloys (n = 1, 3, 5, 7, and 9 at%). Mater. Sci. Eng., A 664, 17–25 (2016)

    Article  CAS  Google Scholar 

  24. X. Li, F. Bottler, R. Spatschek, A. Schmitt, M. Heilmaier, F. Stein, Coarsening kinetics of lamellar microstructures: experiments and simulations on a fully-lamellar Fe–Al in situ composite. Acta Mater. 127, 230–243 (2017)

    Article  CAS  Google Scholar 

  25. A.J. Ardell, Coarsening of directionally-solidified eutectic microstructures, Computer-aided Design of High-temperature Materials, 163-182 (1999).

  26. J. Guo, K. Huai, Q. Gao, W. Ren, G. Li, Effects of rare earth elements on the microstructure and mechanical properties of NiAl-based eutectic alloy. Intermetallics 15, 727–733 (2007)

    Article  CAS  Google Scholar 

  27. L. Sheng, J. Guo, W. Ren, Z. Zhang, Z. Ren, H. Ye, Preliminary investigation on strong magnetic field treated NiAl–Cr (Mo)–Hf near eutectic alloy. Intermetallics 19, 143–148 (2011)

    Article  CAS  Google Scholar 

  28. D. Zander, R.D. Pütz, Investigation of the microstructure related high temperature oxidation behaviour of Fe–25Al–5Cr-0.5 Zr and Fe–25Al–5Cr-0.5 Zr+ TiC at 700° C in air. Intermetallics 126, 106924 (2020)

    Article  CAS  Google Scholar 

  29. K. Nowak, M. Kupka, High-temperature oxidation behaviour of B2 FeAl based alloy with Cr Zr and B additions. Mater. Chem. Phys. 132, 902–908 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.031

    Article  CAS  Google Scholar 

  30. L. Senčekova, M. Palm, J. Pešička, J. Veselý, Microstructures, mechanical properties and oxidation behaviour of single-phase Fe3Al (D03) and two-phase α-Fe, Al (A2)+Fe3Al (D03) FeAlV alloys. Intermetallics 73, 58–66 (2016). https://doi.org/10.1016/j.intermet.2016.03.004

    Article  CAS  Google Scholar 

  31. A. Hotař, M. Palm, Oxidation resistance of Fe–25Al–2Ta (at%) in air. Intermetallics 18, 1390–1395 (2010). https://doi.org/10.1016/j.intermet.2010.02.014

    Article  CAS  Google Scholar 

  32. H. Guo, D. Li, L. Zheng, S. Gong, H. Xu, Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200°C. Corros. Sci. 88, 197–208 (2014). https://doi.org/10.1016/j.corsci.2014.07.036

    Article  CAS  Google Scholar 

  33. Y. Garip, C. Ceper, N. Ergin, A.S. Demirkıran, O. Ozdemir, Production of NiAl–(Cr, Mo) eutectic alloys and their cyclic oxidation behavior at 800–1000°C. Phys. Metals Metall. 121, 1301–1308 (2020). https://doi.org/10.1134/S0031918X20130062

    Article  Google Scholar 

  34. B. Han, Y. Ma, H. Peng, L. Zheng, H. Guo, Effect of Mo, Ta, and Re on high-temperature oxidation behavior of minor Hf doped β-NiAl alloy. Corros. Sci. 102, 222–232 (2016). https://doi.org/10.1016/j.corsci.2015.10.011

    Article  CAS  Google Scholar 

  35. P. Castello, F.H. Stott, F. Gesmundo, Yttrium-promoted selective oxidation of aluminium in the oxidation at 1100°C of an eutectic Ni–Al–Cr3C2 alloy. Corros. Sci. 41, 901–918 (1999). https://doi.org/10.1016/S0010-938X(98)00162-0

    Article  CAS  Google Scholar 

  36. M.S. Atas, M. Yildirim, Structural properties and cyclic oxidation behavior of Ni–Al–Y superalloys. Kovove Mater. 60, 281–292 (2022)

    CAS  Google Scholar 

  37. Z.-S. Wang, X. Yi, J.-T. Guo, L.-Z. Zhou, Z.-Q. Hu, G.-Y. Zhang, Z.-G. Chen, High temperature oxidation behavior of directionally solidified NiAl–31Cr–2.9 Mo–0.1 Hf–0.05 Ho eutectic alloy. Trans. Nonferrous Metals Soc. China 22, 1582–1587 (2012)

    Article  CAS  Google Scholar 

  38. A. Martinez-Villafane, J. Chacon-Nava, C. Gaona-Tiburcio, F. Almeraya-Calderon, R. Bautista-Margulis, J. Gonzalez-Rodríguez, The effect of Nd and Pr on the oxidation behavior of a Fe-13Cr alloy. Scripta Mater. 46, 127–130 (2002)

    Article  CAS  Google Scholar 

  39. J. Guo, C. Xu, Effect of NiAl microcrystalline coating on the high-temperature oxidation behavior of NiAl–28Cr–5Mo–1Hf. Oxid. Met. 58, 457–468 (2002)

    Article  CAS  Google Scholar 

  40. J.L. González-Carrasco, P. Perez, P. Adeva, J. Chao, Oxidation behaviour of an ODS NiAl-based intermetallic alloy. Intermetallics 7, 69–78 (1999)

    Article  Google Scholar 

  41. Q. Feng, B. Tryon, L.J. Carroll, T.M. Pollock, Cyclic oxidation of Ru-containing single crystal superalloys at 1100°C. Mater. Sci. Eng., A 458, 184–194 (2007). https://doi.org/10.1016/j.msea.2006.12.064

    Article  CAS  Google Scholar 

  42. J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, Q. Zhang, S. Deng, J. Zu, High-temperature oxidation behavior and mechanism of a new type of wrought Ni–Fe–Cr–Al superalloy up to 1300°C. Oxidat. Metals 53, 273–287 (2000). https://doi.org/10.1023/A:1004537119922

    Article  CAS  Google Scholar 

  43. P. Berthod, Kinetics of high temperature oxidation and chromia volatilization for a binary Ni–Cr alloy. Oxidat. Metals 64, 235–252 (2005). https://doi.org/10.1007/s11085-005-6562-8

    Article  CAS  Google Scholar 

  44. M.H. Li, X.F. Sun, J.G. Li, Z.Y. Zhang, T. Jin, H.R. Guan, Z.Q. Hu, Oxidation behavior of a single-crystal Ni-base superalloy in air. I: at 800 and 900°C. Oxidat. Metals 59, 591–605 (2003). https://doi.org/10.1023/A:1023604214245

    Article  CAS  Google Scholar 

  45. G. Wallwork, A. Hed, Some limiting factors in the use of alloys at high temperatures. Oxid. Met. 3, 171–184 (1971)

    Article  CAS  Google Scholar 

  46. T. Boll, K.A. Unocic, B.A. Pint, A. Mårtensson, K. Stiller, Grain boundary chemistry and transport through alumina scales on NiAl alloys. Oxid. Met. 88, 469–479 (2017)

    Article  CAS  Google Scholar 

  47. T. Boll, K.A. Unocic, B.A. Pint, K. Stiller, Interfaces in oxides formed on NiAlCr doped with Y Hf, Ti, and B. Microsc. Microanal. 23, 396–403 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. J.A. Haynes, B.A. Pint, Y. Zhang, I.G. Wright, Comparison of the cyclic oxidation behavior of β-NiAl, β-NiPtAl and γ–γ′ NiPtAl coatings on various superalloys. Surf. Coat. Technol. 202, 730–734 (2007)

    Article  CAS  Google Scholar 

  49. B. Pint, K. More, I. Wright, Effect of quaternary additions on the oxidation behavior of Hf-doped NiAl. Oxid. Met. 59, 257–283 (2003)

    Article  CAS  Google Scholar 

  50. B. Pint, M. Treska, L. Hobbs, The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on β-NiAl. Oxid. Met. 47, 1–20 (1997)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this paper.

Author information

Authors and Affiliations

Authors

Contributions

MSA: Conceptualization, Methodology, Writing—original draft. MY: Investigation, Methodology, Writing—review & editing.

Corresponding author

Correspondence to Mehmet Sahin Atas.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atas, M.S., Yildirim, M. Effect of Nd Addition on the Microstructure and Cyclic Oxidation Behavior of NiAl–Cr(Mo) Eutectic Alloys. Inter Metalcast 18, 1192–1203 (2024). https://doi.org/10.1007/s40962-023-01102-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01102-w

Keywords

Navigation