Skip to main content

Advertisement

Log in

Influence of Cantor Alloy Particles on Microstructure, and Wear Behavior of Aluminum Metal Matrix Composite

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The performance of industrial tribo-systems depends on advanced composites with superior tribological characteristics. In this study, the CoCrFeMnNi high entropy alloy (HEA) is prepared through mechanical alloying, while stir squeeze casting aided with an ultrasonic transducer is used to fabricate AA 6082 alloy and x% HEA/AA composites (where, x= 2, 4, 6, 8 in weight percentage). The effect of HEAp on dry sliding wear performance of HEA/AA composites is examined in as-cast conditions using a pin-on-disk wear tester at varying normal applied pressure (0.254 MPa, 0.509 MPa, 0.763 MPa, 1.018 MPa, and 1.273 MPa), varying sliding distance (1000 m, 2000 m, 3000 m, 4000 m, and 5000 m) and a constant sliding speed (3.5 m/sec), special emphasis is centered on response factors such as wear rate, seizure resistance, and bulk temperature upsurge. The composite showed an ability to withstand higher temperatures, and better seizure and wear resistance over the alloy. The phase identification and microstructural study were carried out using an X-ray diffractometer, field emission scanning electron microscope, and transmission electron microscope, whereas the topography of worn-out surface was examined through an optical profilometer. There was a substantial decrease in coefficient of friction, and wear rate noticed as the HEAs concentration increased, whereas in all the wear conditions, the wear rate of 8% HEA/AA composite shows maximum resilience against wear, the inclusion of HEA particles also influences the extent of the subsurface at the seizure condition.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. J. Zhang, S. Yang, Z. Chen, H. Wu, J. Zhao, Z. Jiang, Graphene encapsulated SiC nanoparticles as tribology-favoured nanofillers in aluminium composite. Compos. Part B Eng. 162, 445–453 (2019). https://doi.org/10.1016/j.compositesb.2018.12.046

    Article  CAS  Google Scholar 

  2. H. Yang, L. Jiang, M. Balog, P. Krizik, J.M. Schoenung, Reinforcement size dependence of load bearing capacity in ultrafine-grained metal matrix composites. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48(9), 4385–4392 (2017). https://doi.org/10.1007/s11661-017-4186-7

    Article  CAS  Google Scholar 

  3. P. Kumar et al., Effect of eutectic silicon and silicon carbide particles on high stress scratching wear of aluminium composite for various testing parameters. Wear 482–483, 203921 (2021). https://doi.org/10.1016/j.wear.2021.203921

    Article  CAS  Google Scholar 

  4. R. Vasanth Kumar, R. Keshavamurthy, C.S. Perugu, M. Alipour, C. Siddaraju, Influence of hot rolling on friction and wear behaviour of Al6061-ZrB2 in-situ metal matrix composites. J. Manuf. Process. 69, 473–490 (2021). https://doi.org/10.1016/j.jmapro.2021.07.058

    Article  Google Scholar 

  5. V. Singhal, O.P. Pandey, Dry sliding wear study of solid lubricants and sillimanite-reinforced aluminum alloy composites. J. Mater. Eng. Perform. 30(11), 8369–8384 (2021). https://doi.org/10.1007/s11665-021-05975-y

    Article  CAS  Google Scholar 

  6. M. Sivanesh Prabhu, A. Elaya Perumal, S. Arulvel, R. Franklin Issac, Friction and wear measurements of friction stir processed aluminium alloy 6082/CaCO3 composite. Meas. J. Int. Meas. Confed. 142, 10–20 (2019). https://doi.org/10.1016/j.measurement.2019.04.061

    Article  Google Scholar 

  7. U. Devadiga, R.K.R. Poojary, P. Fernandes, Artificial neural network technique to predict the properties of multiwall carbon nanotube-fly ash reinforced aluminium composite. J. Mater. Res. Technol. 8(5), 3970–3977 (2019). https://doi.org/10.1016/j.jmrt.2019.07.005

    Article  CAS  Google Scholar 

  8. M.M. Castro et al., A magnesium–aluminium composite produced by high-pressure torsion. J. Alloys Compd. 804, 421–426 (2019). https://doi.org/10.1016/j.jallcom.2019.07.007

    Article  CAS  Google Scholar 

  9. R. Vignesh Kumar, R. Harichandran, U. Vignesh, M. Thangavel, S.B. Chandrasekhar, Influence of hot extrusion on strain hardening behaviour of graphene platelets dispersed aluminium composites. J. Alloys Compd. 855, 157448 (2021). https://doi.org/10.1016/j.jallcom.2020.157448

    Article  CAS  Google Scholar 

  10. C. Fenghong, C. Chang, W. Zhenyu, T. Muthuramalingam, C. Chang, Effects of silicon carbide and tungsten carbide in aluminium metal matrix composites. SILICON 11, 2625–2632 (2019)

    Article  Google Scholar 

  11. K. Nithesh, M.C. Gowrishankar, R. Nayak, S. Sharma, Effect of light weight reinforcement and heat treatment process parameters on morphological and wear aspects of hypoeutectic Al–Si based composites-a critical review. J. Mater. Res. Technol. 15, 4272–4292 (2021). https://doi.org/10.1016/j.jmrt.2021.10.019

    Article  CAS  Google Scholar 

  12. S. Liu, Y. Wang, T. Muthuramalingam, G. Anbuchezhiyan, Effect of B4C and MOS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications. Compos. Part B 176, 107329 (2019). https://doi.org/10.1016/j.compositesb.2019.107329

    Article  CAS  Google Scholar 

  13. S. Arif, B. Jamil, M. Bilal, N. Shaikh, T. Aziz, A.H. Ansari, Characterization of surface morphology, wear performance and modelling of graphite reinforced aluminium hybrid composites. Eng. Sci. Technol. an Int. J. 23(3), 674–690 (2020). https://doi.org/10.1016/j.jestch.2019.07.001

    Article  Google Scholar 

  14. M. Wu, R.C. Setiawan, D.Y. Li, Benefits of passive element Ti to the resistance of AlCrFeCoNi high-entropy alloy to corrosion and corrosive wear. Wear (2022). https://doi.org/10.1016/j.wear.2021.204231

    Article  Google Scholar 

  15. J. Ren et al., Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 608(7921), 62–68 (2022). https://doi.org/10.1038/s41586-022-04914-8

    Article  CAS  PubMed  Google Scholar 

  16. A. Kumar, A. Singh, A. Suhane, A critical review on mechanically alloyed high entropy alloys: processing challenges and properties. Mater. Res. Express (2022). https://doi.org/10.1088/2053-1591/ac69b3

    Article  Google Scholar 

  17. J.W. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  18. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  19. F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61(7), 2628–2638 (2013). https://doi.org/10.1016/j.actamat.2013.01.042

    Article  CAS  Google Scholar 

  20. B. Schuh et al., Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258–268 (2015). https://doi.org/10.1016/j.actamat.2015.06.025

    Article  CAS  Google Scholar 

  21. X. Gao, Y. Lu, Laser 3D printing of CoCrFeMnNi high-entropy alloy. Mater. Lett. 236, 77–80 (2019). https://doi.org/10.1016/j.matlet.2018.10.084

    Article  CAS  Google Scholar 

  22. Y. Chew et al., Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 744, 137–144 (2019). https://doi.org/10.1016/j.msea.2018.12.005

    Article  CAS  Google Scholar 

  23. K. Praveen Kumar, M. Gopi Krishna, J. Babu Rao, N.R.M.R. Bhargava, Fabrication and characterization of 2024 aluminium–high entropy alloy composites. J. Alloys Compd. 640, 421–427 (2015). https://doi.org/10.1016/j.jallcom.2015.03.093

    Article  CAS  Google Scholar 

  24. J. Li et al., Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement. Mater. Sci. Eng. A 792, 139755 (2020). https://doi.org/10.1016/j.msea.2020.139755

    Article  CAS  Google Scholar 

  25. A. Kumar, A. Singh, A. Suhane, Synthesis and characterization of a novel CoCrFeMnNi high-entropy alloy-reinforced AA6082 composite. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00701-3

    Article  Google Scholar 

  26. D. Sun et al., High-temperature oxidation and wear properties of TiC-reinforced CrMnFeCoNi high entropy alloy composite coatings produced by laser cladding. Surf. Coat. Technol. 438, 128407 (2022). https://doi.org/10.1016/j.surfcoat.2022.128407

    Article  CAS  Google Scholar 

  27. A. Zhang, J. Han, B. Su, J. Meng, A novel CoCrFeNi high entropy alloy matrix self-lubricating composite. J. Alloys Compd. 725, 700–710 (2017). https://doi.org/10.1016/j.jallcom.2017.07.197

    Article  CAS  Google Scholar 

  28. A.K. Singh, S. Soni, R.S. Rana, Wear mechanism maps for stir-squeeze cast AA7068 Alloy/ZrO2p composite in accordance with normal load versus sliding speed diagram. Trans. Indian Inst. Met. 75(11), 2867–2874 (2022). https://doi.org/10.1007/s12666-022-02662-x

    Article  CAS  Google Scholar 

  29. P. Han et al., Friction stir processing of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites: corrosion and wear properties. Met. Mater. Int. 29(3), 845–860 (2023). https://doi.org/10.1007/s12540-022-01248-y

    Article  CAS  Google Scholar 

  30. A.K. Singh, S. Soni, R.S. Rana, Sliding wear response of ultrasonic-assisted stir-squeeze cast Al-Zn(-Mg) alloy/ZrO2p composite: wear mechanism and subsurface deformation. Surf. Topogr. Metrol. Prop. 10(2), 025020 (2022). https://doi.org/10.1088/2051-672X/ac6f71

    Article  CAS  Google Scholar 

  31. M. Arif Mahmood, F. Ghassan Alabtah, Y. Al Hamidi, M. Khraisheh, On laser additive manufacturing of high-entropy alloys: a critical assessment of in-situ monitoring techniques and their suitability. Mater. Des. 226, 111658 (2023). https://doi.org/10.1016/j.matdes.2023.111658

    Article  CAS  Google Scholar 

  32. Z. Savaedi, R. Motallebi, H. Mirzadeh, A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys. J. Alloys Compd. 903, 163964 (2022). https://doi.org/10.1016/j.jallcom.2022.163964

    Article  CAS  Google Scholar 

  33. F.D.C. Garcia Filho, R.O. Ritchie, M.A. Meyers, S.N. Monteiro, Cantor-derived medium-entropy alloys: bridging the gap between traditional metallic and high-entropy alloys. J. Mater. Res. Technol. 17, 1868–1895 (2022). https://doi.org/10.1016/j.jmrt.2022.01.118

    Article  CAS  Google Scholar 

  34. A. Kumar, A. Singh, A. Suhane, Mechanically alloyed high entropy alloys: existing challenges and opportunities. J. Mater. Res. Technol. 17, 2431–2456 (2022). https://doi.org/10.1016/j.jmrt.2022.01.141

    Article  CAS  Google Scholar 

  35. X. Duan et al., Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates. J. Mater. Sci. Technol. 136, 97–108 (2023). https://doi.org/10.1016/j.jmst.2022.07.023

    Article  CAS  Google Scholar 

  36. N. Kumar, M.D.K.S.S. Sharma, B.R. Kamath, Sliding wear behaviour of nickel-coated short fibre-reinforced Al7075 composites. J. Fail. Anal. Prev. 20(5), 1609–1614 (2020). https://doi.org/10.1007/s11668-020-00955-1

    Article  Google Scholar 

  37. A. Coyal, N. Yuvaraj, R. Butola, L. Tyagi, An experimental analysis of tensile, hardness and wear properties of aluminium metal matrix composite through stir casting process. SN Appl. Sci. 2(5), 1–10 (2020). https://doi.org/10.1007/s42452-020-2657-8

    Article  CAS  Google Scholar 

  38. H. Hanizam, M.S. Salleh, M.Z. Omar, A.B. Sulong, Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes-aluminium alloy composite through Taguchi method. J. Mater. Res. Technol. 8(2), 2223–2231 (2019). https://doi.org/10.1016/j.jmrt.2019.02.008

    Article  CAS  Google Scholar 

  39. V. Pandian, S. Kannan, Processing and preparation of aerospace-grade aluminium hybrid metal matrix composite in a modified stir casting furnace integrated with mechanical supersonic vibration squeeze infiltration method. Mater. Today Commun. 26, 101732 (2021). https://doi.org/10.1016/j.mtcomm.2020.101732

    Article  CAS  Google Scholar 

  40. S.D. Kumar, M. Ravichandran, A. Jeevika, B. Stalin, C. Kailasanathan, A. Karthick, Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route. Ceram. Int. 47(9), 12951–12962 (2021). https://doi.org/10.1016/j.ceramint.2021.01.158

    Article  CAS  Google Scholar 

  41. G. Wang et al., Synthesis and thermal stability of a nanocrystalline MoNbTaTiV refractory high-entropy alloy via mechanical alloying. Int. J. Refract. Met. Hard Mater. (2019). https://doi.org/10.1016/j.ijrmhm.2019.104988

    Article  Google Scholar 

  42. Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, S.K. Chen, Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481(1–2), 768–775 (2009). https://doi.org/10.1016/j.jallcom.2009.03.087

    Article  CAS  Google Scholar 

  43. M. Huang, J. Jiang, Y. Wang, Y. Liu, Y. Zhang, Effects of milling process parameters and PCAs on the synthesis of Al0.8Co0.5Cr1.5CuFeNi high entropy alloy powder by mechanical alloying. Mater. Des. 217, 110637 (2022). https://doi.org/10.1016/j.matdes.2022.110637

    Article  CAS  Google Scholar 

  44. Y.L. Liu, S.B. Kang, H.W. Kim, Complex microstructures in an as-cast Al–Mg–Si alloy. Mater. Lett. 41(6), 267–272 (1999). https://doi.org/10.1016/S0167-577X(99)00141-X

    Article  CAS  Google Scholar 

  45. M. Warmuzek, K. Rabczak, J. Sieniawski, The course of the peritectic transformation in the Al-rich Al–Fe–Mn–Si alloys. J. Mater. Process. Technol. 162–163, 422–428 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.030

    Article  CAS  Google Scholar 

  46. M. Warmuzek, J. Sieniawski, K. Wicher, G. Mrówka, The study of the distribution of the transition metals and Si during primary precipitation of the intermetallic phases in Al–Mn–Si alloys. J. Mater. Process. Technol. 175(1–3), 421–426 (2006). https://doi.org/10.1016/j.jmatprotec.2005.04.005

    Article  CAS  Google Scholar 

  47. J. George, E. Dieter, Mechanical_metallurgy (McGraw-Hill Book Company, Inc, New York, 1961), pp.3–609

    Google Scholar 

  48. K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng, Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Mater. Sci. Eng. A 540, 123–129 (2012). https://doi.org/10.1016/j.msea.2012.01.112

    Article  CAS  Google Scholar 

  49. S.F. Hassan, M. Gupta, Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Alloys Compd. 419(1–2), 84–90 (2006). https://doi.org/10.1016/j.jallcom.2005.10.005

    Article  CAS  Google Scholar 

  50. A.K. Singh, S. Soni, R.S. Rana, Mechanical and sliding wear behavior of stir-squeeze cast and T6 heat-treated AA7068-ZrO2p composite. Compos. Interfaces 00(00), 1–27 (2022). https://doi.org/10.1080/09276440.2022.2120736

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work is carried out at Maulana Azad National Institute of Technology, Bhopal, and supported by the Ministry of Education, Government of India. The authors are very grateful to the Indian Institute of Technology, Roorkee, and the Indian Institute of Technology, Kanpur for their assistance.

Funding

No funding is available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, A., Suhane, A. et al. Influence of Cantor Alloy Particles on Microstructure, and Wear Behavior of Aluminum Metal Matrix Composite. Inter Metalcast 18, 1361–1386 (2024). https://doi.org/10.1007/s40962-023-01099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01099-2

Keywords

Navigation