Skip to main content

Development of High-Ductility and Low-Hot-Tearing-Susceptibility Non-heat Treatment Al–Mg–Mn-Based Die Casting Alloy for Automotive Structural Parts

Abstract

Non-heat-treated Al–Mg-based die casting alloys have been developed for the structural parts of automobiles. In previous studies, alloy compositions with at least 1.0%Si have been proposed to reduce the hot tearing susceptibility (HTS). On the other hand, the increase in the Si content reduces the ductility. For some automotive body structures, Al–Mg alloy die castings with Si content exceeding 1.0% should not have the required ductility. This study aims to develop an Al–Mg alloy with both high ductility and low HTS by investigating the following three characteristics of an Al–4.5Mg–1.0Mn alloy with 0.2%Si added: (1) additional elements to reduce the HTS, (2) the associated mechanical properties (requirements for the automotive company: 0.2% proof stress ≥ 140 MPa and fracture elongation ≥ 15%), and (3) the mechanism of decreasing the HTS. It was revealed that the co-addition of 0.025%Sr, 0.08%Ti, and 0.016%B reduced the HTS when the hydrogen content of the melt was 0.5–1.0 mL/100 g Al. Furthermore, the 0.2% proof stress and fracture elongation of a lower link arm produced via HPDC with the above composition were found to achieve the requirements. It was also indicated that the mechanism of decrease in the HTS by the Sr addition should result from the decrease in the thermal tensile load due to the formation of hydrogen porosity at a lower solid fraction than that without Sr. It is suggested that when 0.025%Sr, 0.08%Ti, and 0.016%B are added to the Al–4.5Mg–1.0Mn–0.2Si alloy, non-heat-treated automotive structural parts with both high ductility and low HTS will be obtained by high-pressure die casting.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

References

  1. S. Ji, D. Watson, Z. Fan, M. White, Development of a super ductile diecast Al–Mg–Si alloy. Mater. Sci. Eng. A 556, 824–833 (2012). https://doi.org/10.1016/j.msea.2012.07.074

    Article  CAS  Google Scholar 

  2. L. Wan, Z. Hu, S. Wu, X. Liu, Mechanical properties and fatigue behavior of vacuum-assist die cast AlMgSiMn alloy. Mater. Sci. Eng. A 576, 252–258 (2013). https://doi.org/10.1016/j.msea.2013.03.042

    Article  CAS  Google Scholar 

  3. S. Ji, F. Yan, Z. Fan, Development of a high strength Al–Mg2Si–Mg–Zn based alloy for high pressure die casting. Mater. Sci. Eng. A 626, 165–174 (2015). https://doi.org/10.1016/j.msea.2014.12.019

    Article  CAS  Google Scholar 

  4. L. Yuan, P. Han, G. Asghar, B. Liu, B. Hu, P. Fu, L. Peng, Development of high strength and toughness non-heated Al–Mg–Si alloys for high-pressure die-casting. Acta Metall. Sinica 34, 845–860 (2021). https://doi.org/10.1007/s40195-020-01174-1

    Article  CAS  Google Scholar 

  5. H. Hosokawa, H. Iwasaki, M. Mabuchi, T. Tagata, K. Higashi, Effects of Si on deformation behavior and cavitation of coarse-grained Al–4.5Mg alloys exhibiting large elongation. Acta mater. 47, 1859–1867 (1999). https://doi.org/10.1016/S1359-6454(99)00047-6

    Article  CAS  Google Scholar 

  6. J. Ito, S. Kitaoka, N. Oshiro, N. Nonaka, T. Koike, M. Yoshida, Influence of composition and thickness on mechanical properties of non-heat treatment high pressure die casting Al–Mg based alloy for automotive body parts. J. JFS 89, 795–798 (2017). https://doi.org/10.11279/jfes.89.795

    Article  Google Scholar 

  7. N. Nishi, S. Kami, Y. Takahashi, H. Komoto, J.G. Conley, The Mechanical properties of Al–Ni–Mg and Al–Mn–Mg die casting alloys. Miner. Met Mater. Soc. 45, 1–464 (1988)

    Google Scholar 

  8. S. Li, D. Apelian, Hot tearing of aluminum alloys a critical literature review. Int. J. Metalcast. 5, 23–40 (2011). https://doi.org/10.1007/BF03355505

    Article  Google Scholar 

  9. A.M. Nabawy, A.M. Samuel, F.H. Samuel, A review on the criteria of hot tearing susceptibility of aluminum cast alloys. Int. J. Metalcast. 15, 1362–1374 (2021). https://doi.org/10.1007/s40962-020-00559-3

    Article  Google Scholar 

  10. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Metalcast. 1, 31–40 (2007). https://doi.org/10.1007/BF03355416

    Article  CAS  Google Scholar 

  11. H.F. Bishop, C.G. Ackerlind, W.S. Pellini, Investigation of metallurgical and mechanical effects in the development of hot tearing. Trans. AFS 65, 247–258 (1957)

    Google Scholar 

  12. M. Easton, H. Wang, J. Grandfield, D. Stjohn, E. Sweet, An Analysis of the effect of grain refinement on the hot tearing of aluminium alloys. Mater. Forum 28, 224–229 (2004)

    CAS  Google Scholar 

  13. S. Lin, C. Aliravci, M.O. Pekguleryuz, Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metall. Mater. Trans. A 38, 1056–1068 (2007). https://doi.org/10.1007/s11661-007-9132-7

    Article  CAS  Google Scholar 

  14. R. Kimura, H. Hatayama, K. Shinozaki, I. Murashima, J. Asada, M. Yoshida, Effect of grain refiner and grain size on the susceptibility of Al–Mg die casting alloy to cracking during solidification. J. Mater. Process. Technol. 209, 210–219 (2009). https://doi.org/10.1016/j.jmatprotec.2008.01.053

    Article  CAS  Google Scholar 

  15. A.W. Shah, S. Ha, B. Kim, Y. Yoon, H. Lim, S. Kim, Effect of compositional variation on the microstructural evolution and the castability of Al–Mg–Si ternary alloys. Metall. Mater. Trans. A 52, 3353–3365 (2021). https://doi.org/10.1007/s11661-021-06306-5

    Article  CAS  Google Scholar 

  16. B. Hu, D. Li, J. Xu, X. Wang, X. Zeng, Hot tearing behavior in double ternary eutectic alloy system: Al–Mg–Si alloys. Metall. Mater. Trans. A 52, 789–805 (2021). https://doi.org/10.1007/s11661-020-06101-8

    Article  CAS  Google Scholar 

  17. S. Saikawa, G. Soshima, G. Okazawa, S. Ikeno, Effects of Ti-B and Sr on the hot-tearing of Al–Mg–Si system alloy. J. JFS 87, 538–544 (2015). https://doi.org/10.11279/jfes.87.538

    Article  Google Scholar 

  18. S. Saikawa, G. Aoshima, N. Hattori, S. Ikeno, E. Yanagihara, Effects of Sr addition on hot-tearing of Al–6%Mg–3%Si alloy. J. JFS 87(2015), 561–568 (2015). https://doi.org/10.11279/jfes.87.561

    Article  CAS  Google Scholar 

  19. E. Yanagihara, G. Aoshima, S. Komura, S. Saikawa, S. Ikeno, Effect of Sr addition on the solidification structure in Al-6mass%Mg-3mass%Si alloy. Mater. Sci. Forum 879, 2383–2388 (2016). https://doi.org/10.4028/www.scientific.net/MSF.879.2383

    Article  Google Scholar 

  20. M. Shimizu, Y. Nagata, N. Oshiro, S. Miyaziri, T. Danno, M. Yoshida, Influence of addition of small amount of si on hot-tearing of non-thermally treated high pressure Al–Mg based die casting alloy for automotive body parts. J. JFS 91, 436–438 (2019)

    Google Scholar 

  21. M. Shimizu, Y. Nagata, N. Oshiro, S. Miyaziri, T. Danno, M. Yoshida, Influence of Sr addition on hot-tearing of non-thermally treated high pressure Al–Mg based die casting alloy for automotive body parts. J. JFS 91, 439–441 (2019)

    Google Scholar 

  22. S. Oya, T. Fujii, F. Kato, M. Ohtak, Evaluation of hot tearing tendency in binary Al–Cu and Al–Si alloys by I-beam test. J. Jpn. Inst. Light Met. 33, 705–711 (1983)

    Article  Google Scholar 

  23. I.I. Novikov, Hot Shortness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966), p.299

    Google Scholar 

  24. M.M.’ Hamdi, A. Mo, H.G. Fjær, TearSim: a two-phase model addressing hot tearing formation during aluminum direct chill casting. Metall. Mater. Trans. A 37, 3069–3083 (2006). https://doi.org/10.1007/s11661-006-0188-6

    Article  Google Scholar 

  25. Y. Nagata, K. Kato, T. Shishido, K. Moizumi, H. Kambe, N. Oshiro, S. Kitaoka, M. Yoshida, Influence of both amount of hydrogen gas content and addition of Sr, Ti, and B on hot-tearing of non-heat treatment Al–4.5Mg–10Mn based die casting alloy. J. JFS 93, 400–403 (2021). https://doi.org/10.11279/jfes.93.400

    Article  Google Scholar 

  26. Y. Nagata, K. Kato, K. Hayashi, H. Kambe, N. Oshiro, S. Kitaoka, M. Yoshida, Influence of both amount of die lubricant and addition amount of Ti, B, and Sr on hot tearing of an automotive body parts applied for non-heat treatment Al–45Mg–10Mn based die casting alloy. J. JFS 93, 404–407 (2021). https://doi.org/10.11279/jfes.93.404

    Article  Google Scholar 

  27. Japan Institute of Light Metals, Report of the Research Subcommittee, No. 60 (2015)

  28. R. Takai, S. Kimura, R. Kashiuchi, H. Kotaki, M. Yoshida, Grain Refinement effects on the strain rate sensitivity and grain boundary sliding in partially solidified Al–5wt%Mg alloy. Mater. Sci. Eng. A 667, 417–425 (2016). https://doi.org/10.1016/j.msea.2016.05.023

    Article  CAS  Google Scholar 

  29. R. Takai, A. Matsushita, S. Yanagida, K. Nakamura, M. Yoshida, Development of an elasto-viscoplastic constitutive equation for an Al–Mg alloy undergoing a tensile test during partial solidification. Mater. Trans. 56, 1233–1241 (2015). https://doi.org/10.2320/matertrans.L-M2015815

    Article  CAS  Google Scholar 

  30. R. Hirohara, Y. Kawada, R. Takai, M. Otaki, T. Okane, M. Yoshida, Prediction and experimental validation of cooling rate dependence of viscoplastic properties in a partially solidified state of Al–5 mass%Mg alloy. Mater. Trans. 58, 1299–1307 (2017). https://doi.org/10.2320/matertrans.L-M2017823

    Article  CAS  Google Scholar 

  31. A. Matsushita, R. Takai, H. Ezaki, T. Okane, M. Yoshida, A new theoretical approach based on the Maxwell model to obtain rheological properties of solidifying alloys and its validation. Metall. Mater. Trans. A 48, 1701–1707 (2017). https://doi.org/10.1007/s11661-017-3998-9

    Article  CAS  Google Scholar 

  32. R. Takai, R. Hirohara, N. Endo, Y. Nagata, T. Okane, M. Yoshida, Controlling factor for maximum tensile stress and elongation of aluminum alloy during partial solidification. Mater. Trans. 60, 2406–2415 (2019). https://doi.org/10.2320/matertrans.L-M2019839

    Article  CAS  Google Scholar 

  33. Y. Nagata, R. Takai, T. Okane, M.K. Faiz, M. Yoshida, Influence of solid cohesion on viscous properties in Norton law for aluminum alloys during partial solidification. Mater. Sci. Eng. A 832, 1–11 (2022). https://doi.org/10.1016/j.msea.2021.142339

    Article  CAS  Google Scholar 

  34. A.R.E. Singer, S.A. Cottrell, Hot-shortness of the aluminum-silicon alloys of commercial purity. J. Inst. Met. 73, 197–212 (1947)

    Google Scholar 

  35. H. Nagaumi, S. Suzuki, T. Okane, T. Umeda, Effect of iron content on hot tearing of high-strength Al–Mg–Si Alloy. Mater. Trans. 47, 2821–2827 (2006). https://doi.org/10.2320/matertrans.47.2821

    Article  CAS  Google Scholar 

  36. G.K. Sigworth, The Modification of Al–Si casting alloys: important practical and theoretical aspects. Inter. J. Metalcast. 2, 19–40 (2008). https://doi.org/10.1007/BF03355425

    Article  CAS  Google Scholar 

  37. D. Argo, J.E. Gruzleski, Porosity in modified aluminum alloy castings. AFS Trans. 96, 65–74 (1988)

    CAS  Google Scholar 

  38. D. Emadi, J.E. Gruzleski, J.M. Toguri, The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metal. Trans. B 24, 1055–1063 (1993). https://doi.org/10.1007/BF02660997

    Article  Google Scholar 

  39. Z. Zhang, X. Bian, Z. Liu, Effect of strontium addition on hydrogen content and porosity shape of Al–Si alloys. Int. J. Cast Metals Res. 14, 31–35 (2001). https://doi.org/10.1080/13640461.2001.11819422

    Article  CAS  Google Scholar 

  40. Y. Shinada, S. Nishi, Pore formation in aluminum unidirectionally solidifying. J. Jpn. Inst. Light Met. 30, 384–389 (1980). https://doi.org/10.2464/jilm.30.384

    Article  CAS  Google Scholar 

  41. M. Rappaz, J.-M. Drezet, M. Gremaud, A new hot-tearing criterion. Metal. Mater. Trans. A 30, 449–455 (1999). https://doi.org/10.1007/s11661-999-0334-z

    Article  Google Scholar 

  42. J.F. Grandfield, C.J. Davidson, J.A. Taylor, Application of a new hot tearing analysis to horizontal direct chill cast magnesium alloy AZ91. Light Met. 1, 895–901 (2001). https://doi.org/10.1002/3527607331.ch30

    Article  Google Scholar 

  43. D. Emadi, J.E. Gruzleski, M. Pekguleryuz, Melt oxidation behavior and inclusion content in unmodified and Sr-modified A356 alloy—their role in pore nucleation. AFS Trans. 104, 763–768 (1996)

    CAS  Google Scholar 

  44. A.M. Samuel, F.H. Samuel, H.W. Doty, H.W. Doty, S. Valtierra, Influence of oxides on porosity formation in Sr-treated alloys. Inter. J. Metalcast. 11, 729–742 (2017). https://doi.org/10.1007/s40962-016-0118-3

    Article  Google Scholar 

  45. Q. Wang, Q. Hao, W. Yu, Effect of strontium modification on porosity formation in A356 alloy. Inter. J. Metalcast. 13, 944–952 (2019). https://doi.org/10.1007/s40962-018-00300-1

    Article  CAS  Google Scholar 

  46. J. Campbell, Complete Casting Handbook (Elsevier, Oxford, 2011)

    Google Scholar 

  47. S. Kitaoka, K. Nishina, Permissible gas content in aluminum alloy melts relative to the cooling rate of the casting. Proc. Int Symp. Extr. Refin. Fabr. Light Metals 24, 18–21 (1991)

    Google Scholar 

  48. P.K. Mallick, Materials, Design and Manufacturing for Lightweight Vehicles (Woodhead Publishing, Cambridge, 2010)

    Book  Google Scholar 

Download references

Acknowledgements

This manuscript is based upon a translated version of a paper published in Japanese in “Journal of Japan Foundry Engineering Society, 94 (2022)” under an agreement between IJMC, AFS, and the Japanese Foundry Society. The authors are grateful to the Die Casting Aluminum Alloys Committee established by the Japan Die Casting Association and Japan Aluminum Alloy Refiners Association for collaboration on this study. We would like to also thank Dr. T. Goda of Nissan Motor Co., Ltd., for conducting the experiment and Dr. K. Moizumi of Isuzu Motors, Ltd., for development of the test device.

Funding

This study was supported by Special Young Scientist Research Fellowship from the Japan Foundry Engineering Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Nagata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, Y., Kato, K., Shishido, T. et al. Development of High-Ductility and Low-Hot-Tearing-Susceptibility Non-heat Treatment Al–Mg–Mn-Based Die Casting Alloy for Automotive Structural Parts. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01047-0

Keywords