Skip to main content

Advertisement

Log in

Studies on Mold Filling Behavior of Al–10.5Si–1.7Cu Al Alloy During Rheo Pressure Die Casting System

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

An attempt has been made to simulate the mold filling behavior of semi-solid slurry of Al–10.5Si–1.7Cu alloy for rheo-pressure die casting (RPDC) with additional emphasis on the speed range of plunger of a die casting unit. The numerical results attained are then validated with subsequent experiments using the in-house-developed RPDC system. The software Flow-3D Cast™ is deployed to simulate the process of die filling at different speed ranges of plunger. Rheological parameters of Al–10.5Si–1.7Cu cast Al alloy used in the simulation study are measured experimentally with Anton™ Rheo meter. Semi-solid metal processing for the experiments is carried out using an indigenously developed coupled cooling slope and pressure die-cast system. The results from the simulation study indicate that plunger movement at higher speeds causes void formation, largely due to the air entrapment in the overflow region. However, when filling at slow speeds, this effect is mitigated simply by ensuring the final temperature of the slurry is above the solidus temperature; thus, the mold is completely filled with no void formation. By comparing the formed appearance of parts in experiments and simulations, as well as observing the X-ray films and flow field obtained in simulation,f it is clear that simulation and experiment agree quite well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Abbreviations

T :

Temperature (°C)

γ :

Shear strain rate

ρ liq :

Density(liquid) (kg/m3)

ρSol :

Density(solidified) (kg/m3)

K liq :

Thermal conductivity (liquid) (W/m/°C)

K sol :

Thermal conductivity (solidified) (W/m/°C)

Cpliq :

Specific heat (liquid) (J/kg/°C)

Cpsol :

Specific heat (solidified) (J/kg/°C)

L :

Latent heat (kJ/kg)

T sol :

Solidus temperature (°C)

T liq :

Liquidus temperature (°C)

References

  1. S.K. Gautam, M. Mallik, H. Roy, A.K. Lohar, S.K. Samanta, Wear and mechanical properties of in situ A356/5%TiB2 composite synthesis by cooling slope technique. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00931-5

    Article  Google Scholar 

  2. U.A. Curle, J.D. Wilkins, Semi-solid casting of pure magnesium. Trans. Tech. Publications. Ltd. (2019). https://doi.org/10.4028/www.scientific.net/SSP.285.464

    Article  Google Scholar 

  3. Gautam SK, Roy H, Lohar AK, Samanta SK, Sutradhar G (2019) Microstructure Characterization and Mechanical Properties of Semi Solid ADC 12 Al Alloy. Int. J. Mod. Manuf. Technol. https://www.ijmmt.ro/vol11no12019/05_Sujeet_K_Gautam.pd

  4. Z. Fan, Development of the rheo-diecasting process for magnesium alloys. Mater. Sci. and Eng. A. (2005). https://doi.org/10.1016/j.msea.2005.09.038

    Article  Google Scholar 

  5. C.P. Hong, J.M. Kim, Development of an advanced rheocasting process and its applications. Trans. Tech. Publicat. Ltd (2006). https://doi.org/10.4028/www.scientific.net/SSP.116-117.44

    Article  Google Scholar 

  6. Z.Y. Wang, Z.S. Ji, L.X. Sun et al., Microstructure of semi-solid ADC12 aluminum alloy adopting new SIMA method. Trans. Nonferrous Metal. Soc. China. (2010). https://doi.org/10.1016/S1003-6326(10)60574-2

    Article  Google Scholar 

  7. S. Janudom, T. Rattanochaikul, R. Burapa, S. Wisutmethangoon, J. Wannasin, Feasibility of semi-solid die casting of ADC12 aluminum alloy. Trans. Nonferrous. Metal Soc. China. (2010). https://doi.org/10.1016/S1003-6326(09)60370-8

    Article  Google Scholar 

  8. Z.H. Hu, G.H. Wu, P. Zhang, W. Liu, P.A.N.G. Song, L. Zhang, W. Ding, Primary phase evolution of rheo-processed ADC12 aluminum alloy. Trans. Nonferrous Metal. Soc. China. (2016). https://doi.org/10.1016/S1003-6326(16)64084-0

    Article  Google Scholar 

  9. M.M. Shehata, S. El-Hadad, M.E. Moussa, S.M. El, The Combined Effect of Cooling Slope Plate Casting and Mold Vibration on Microstructure, Hardness and Wear Behavior of Al–Si Alloy (A390). Inter. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00497-0

    Article  Google Scholar 

  10. G. Eisaabadi, A. Nouri, Effect of Sr on the Microstructure of Electromagnetically Stirred Semi-solid Hypoeutectic Al–Si Alloys. Inter. J. Metalcast (2018). https://doi.org/10.1007/s40962-017-0161-8

    Article  Google Scholar 

  11. K. Prapasajchavet, Y. Harada, S. Kumai, Microstructure analysis of Al–5.5at%Mg alloy semi-solid slurry by weck’s reagent. Inter. J. of Metalcast. 11(1), 123–130 (2017). https://doi.org/10.1007/s40962-016-0084-9

    Article  Google Scholar 

  12. H.D. Zhao, F. Wang, Y.Y. Li, W. Xia, Experimental and numerical analysis of gas entrapment defects in plate ADC12 die castings. J. Mater. Process. Tech. (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.028

    Article  Google Scholar 

  13. S. Sulaiman, A.M. Hamouda, D.T. Gethin, Experimental investigation for metal-filling system of pressure diecasting process on a cold chamber machine. J. Mater. Process. Tech. (2001). https://doi.org/10.1016/S0924-0136(01)00972-4

    Article  Google Scholar 

  14. T.H. Han, J.H. Kuo, W.S. Hwang, Numerical simulation of the liquid-gas interface shape in the shot sleeve of cold chamber die casting machine. J. Mater. Engin. Perform. (2007). https://doi.org/10.1007/s11665-007-9093-4

    Article  Google Scholar 

  15. S. Ren, F. Wang, J. Sun, Z. Liu, P. Mao, Gating system design based on numerical simulation and production experiment verification of aluminum alloy bracket fabricated by Semi-solid rheo-die casting process. InteR. J. Metalcast. 16(2), 878–893 (2022). https://doi.org/10.1007/s40962-021-00648-x

    Article  Google Scholar 

  16. I. Dumani, S. Jozić, D. Bajić, J. Krolo, Optimization of semi-solid high-pressure die casting process by computer simulation, Taguchi method and grey relational analysis. Inter. J. Metalcast. (2021). https://doi.org/10.1007/s40962-020-00422-5

    Article  Google Scholar 

  17. B. Zhou, S. Lu, K. Xu, C. Xu, Z. Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling. Inter. J. Metalcast. (2020). https://doi.org/10.1007/s40962-019-00357-6

    Article  Google Scholar 

  18. P. Ashtari, G. Birsan, A. Khalaf, S. Sankar, Controlled Diffusion Solidification of 2024, 6082 and 7075 Al Alloys via Tilt-Pour Casting Process. Inter. J. Metalcast. (2011). https://doi.org/10.1007/BF03355471

    Article  Google Scholar 

  19. Y.L. Bai, W.M. Mao, X. Jun, Numerical simulation on rheo-diecasting mould filling of semi-solid key-shaped component. Trans. Nonferrous Metal. Soc. China. (2008). https://doi.org/10.1016/S1003-6326(08)60118-1

    Article  Google Scholar 

  20. A. Alexandrou, F. Bardinet, W. Loué, Mathematical and computational modeling of die filling in semisolid metal processing. J. Mater. Process. Tech. (1999). https://doi.org/10.1016/S0924-0136(99)00316-7

    Article  Google Scholar 

  21. F. Ilinca, J.F. Hétu, F. Ajersch, Mold Filling Simulation of Semi-Solid Magnesium Alloys. Trans. Tech. Publ. Ltd. (2008). https://doi.org/10.4028/www.scientific.net/SSP.141-143.231

    Article  Google Scholar 

  22. O.J. Ilegbusi, S. Brown, Mold filling of semisolid metal slurries. J. Mater. Engine. Perform. (1995). https://doi.org/10.1007/BF02649310

    Article  Google Scholar 

  23. FLOW-3Dv11, 2019. Flow Science, http://www.flow3d.com

  24. P. Das, S.K. Samanta, P. Dutta, Rheological behavior of Al-7Si-0.3Mg Alloy at Mushy State. Metall. Mater. Transact. B 46(3), 1302–1313 (2015). https://doi.org/10.1007/s11663-015-0290-5

    Article  CAS  Google Scholar 

  25. Z.H. Hu, G.H. Wu, P. Zhang, W.C. Liu, P.A.N.G. Song, Z.L. Ding, WJ, Primary phase evolution of rheo-processed ADC12 aluminum alloy. Trans. Nonferrous Metal. Soc. China. (2016). https://doi.org/10.1016/S1003-6326(16)64084-0

    Article  Google Scholar 

  26. S.G. Liu, F.Y. Cao, X.Y. Zhao, Y.D. Jia, Z.L. Ning, J.F. Sun, Characteristics of mold filling and entrainment of oxide film in low pressure casting of A356 alloy. Mater. Sci. Eng. A. (2015). https://doi.org/10.1016/j.msea.2014.12.058

    Article  Google Scholar 

  27. H. Puga, J. Barbosa, T. Azevedo, S. Ribeiro, J.L. Alves, Low pressure sand casting of ultrasonically degassed AlSi7Mg0.3 alloy: modelling and experimental validation of mould filling. Mater. Design. (2016). https://doi.org/10.1016/j.matdes.2016.01.059

    Article  Google Scholar 

  28. J. Sun, Q. Le, L. Fu, J. Bai, J. Tretter, K. Herbold, H. Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting process. J. Mater. Process. Tech. (2019). https://doi.org/10.1016/j.jmatprotec.2018.016

    Article  Google Scholar 

  29. S.K. Gautam, N. Mandal, H. Roy, A.K. Lohar, S.K. Samanat, S. Goutam, Optimization of processing parameters of cooling slope process for semi-solid casting of ADC 12 Al. J. Brazil Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1213-6

    Article  Google Scholar 

  30. J.W. Zhao, S.S. Wu, Microstructure and mechanical properties of rheo-diecasted A390 alloy. Trans. Nonfer. Metal. Soc. China. (2010). https://doi.org/10.1016/S1003-6326(10)60576-6

    Article  Google Scholar 

  31. M. Qi, Y. Kang, Y. Xu, J.Y. Li, A.S. Liu, New technique for preparing A356 alloy semisolid slurry and its rheo-diecast microstructure and properties. Trans. Nonferrous Metal. Soc. China. (2021). https://doi.org/10.1016/S1003-6326(21)65623-6

    Article  Google Scholar 

  32. Z. Fan, X. Fang, S. Ji, Microstructure and mechanical properties of rheo-diecast (RDC) aluminium alloys. Mater. Sci. Eng. A. (2005). https://doi.org/10.1016/j.msea.2005.09.001

    Article  Google Scholar 

  33. S.K. Gautam, H. Roy, A.K. Lohar, S. Goutam, Effect of processing routes on structure-property correlationship of ADC 12 Al alloy. Mater. Res. Exp. (2019). https://doi.org/10.1088/2053-1591/aaec2c

    Article  Google Scholar 

  34. M. Hitchcock, Y. Wang, Z. Fan, Secondary solidification behaviour of the Al–Si–Mg alloy prepared by the rheo-diecasting process. Acta. Materi. (2007). https://doi.org/10.1016/j.actamat.2006.10.018

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to the Director, CSIR- Central Mechanical Engineering Research Institute for his kind permission for conducting experimental work. The authors acknowledge Mr. Anmol Khalkho, Anup Rajak for their help rendered during the experimental work at CMERI-Durgapur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujeet Kumar Gautam.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, S.K., Roy, H., Lohar, A.K. et al. Studies on Mold Filling Behavior of Al–10.5Si–1.7Cu Al Alloy During Rheo Pressure Die Casting System. Inter Metalcast 17, 2868–2877 (2023). https://doi.org/10.1007/s40962-023-00958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-00958-2

Keywords

Navigation