Skip to main content
Log in

Effect of Micro-structural Dispersity of SiMo Ductile Iron on Thermal Cycling Performance

International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

High alloyed by silicon and molybdenum (SiMo) ductile iron is a common material used for car exhaust systems, and its micro-structural dispersity depends on intrinsic parameters, which include alloy composition and inoculation efficiency, as well as extrinsic factors, such as casting wall thickness and molding material, which define the cooling rate during solidification. Micro-structural dispersity refers to sizes of structural constituencies and space distribution within the micro-structure. A variation in the micro-structural dispersity can significantly affect high-temperature performance of SiMo ductile iron during static oxidation and transient thermo-mechanical loading conditions. In the first published part of this study, high-temperature static oxidation tests were performed on SiMo ductile iron solidified in a casting with varying wall thicknesses from 5 to 100 mm. In addition, the faster solidified specimens with extremely high micro-structural dispersity were taken from near the chilled casting surface. It was shown that above the critical temperature diapason, increasing micro-structural dispersity intensified the surface degradation due to intensive decarburization (deC). In this second part of the study, the specimens with different micro-structural dispersity were subjected to constrained thermal cycling by applying different cycle schedules to quantify interactions between thermal fatigue and oxidation. It was shown that the performance of SiMo ductile iron could be improved by optimizing the micro-structural dispersity for different transient thermo-mechanical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

References

  1. G. Güizaa, W. Hormazab, A. Galvis, L. Morenod, Bending overload and thermal fatigue fractures in a cast exhaust manifold. Eng. Fail. Anal. 82, 138 (2017)

    Article  Google Scholar 

  2. J. Rathnaraj, Thermomechanical fatigue analysis of stainless steel exhaust manifolds. Int. J. Eng. Sci. 2(2), 265 (2012)

    Google Scholar 

  3. J. Peng, Y. Wang, Q. Dai, X. Liu, L. Liu, Z. Zhang, Effect of stress triaxiality on plastic damage evolution and failure mode for 316L notched specimen. Metals 9, 1067 (2019)

    Article  CAS  Google Scholar 

  4. R. Neu, H. Sehitoglu, Thermomechanical fatigue, oxidation, and creep: Part II. Metall. Trans. 20A, 1771 (1989)

    Google Scholar 

  5. H. Sehitoglu, Thermal and thermomechanical fatigue of structural alloys. Fatigue Fract. ASM Handb. 19, 527 (1996)

    Article  Google Scholar 

  6. Standard SAE J2582: Standard Specification for High-Silicon Molybdenum Ferritic Iron Castings, SAE (2018)

  7. D. Li, R. Perrin, G. Burger, D. McFarlan, B. Black, R. Logan. R. Williams, Solidification Behavior, Microstructure, Mechanical Properties, Hot Oxidation and Thermal Fatigue Resistance of High Silicon SiMo Nodular Cast Irons; SAE Tech. Pap. 2004-01-0792; SAE International: Warrendale, PA, USA (2004)

  8. X. Wu et al., Metall. Mater. Trans. A 46, 2530 (2015)

    Article  CAS  Google Scholar 

  9. E. Trelles, S. Eckmann, C. Schweizer, Int. J. Fatigue 155, 106573 (2022)

    Article  CAS  Google Scholar 

  10. E. Trelles, C. Schweizer, Int. J. Fatigue 155, 106592 (2022)

    Article  CAS  Google Scholar 

  11. O. Yanagisawa, T.S. Lui, Metall. Mater. Trans. A 1985(16A), 667 (1985)

    Article  Google Scholar 

  12. C. Chao, T. Lui, M. Hon, The effect of microstructure of ferritic spheroidal graphite cast irons on intergranular fracture at intermediate temperatures. Metall. Mater. Trans. A 20A, 431 (1989)

    Article  CAS  Google Scholar 

  13. C. Chen, T. Lui, L. Chen, The effect of phosphorus segregation on the intermediate-temperature embrittlement of ferritic, spheroidal graphite cast iron. Metall. Mater. Trans. A 25A, 57 (1994)

    Google Scholar 

  14. C. Chen, T. Lui, L. Chen, Effect of residual magnesium content on thermal fatigue cracking behavior of high-silicon spheroidal graphite cast iron. Metall. Mater. Trans. A 30A, 1549 (1999)

    Article  Google Scholar 

  15. S. Lekakh, A. Bofah, R. Osei, R. O’Malley, L. Godlewski, M. Li, High temperature oxidation and decarburization of SiMo cast iron in air and combustion atmospheres. Oxid. Met. 95(2), 251 (2021)

    Article  CAS  Google Scholar 

  16. S. Lekakh, A. Bofah, W.-T. Chen, L. Godlewski, M. Li, Prevention of high-temperature surface degradation in SiMo cast irons by Cr and Al alloying. Metall. Mater. Trans. B 51B, 2542 (2020)

    Article  Google Scholar 

  17. A. Ebel, S. Brou, B. Malard, J. Lacaze, D. Monceau, L. Vaissière, High-temperature oxidation of a high silicon SiMo spheroidal cast iron in air with in situ change in H2O content. Mater. Sci. (2018). https://doi.org/10.4028/www.scientific.net/MSF.925.353

    Article  Google Scholar 

  18. A. Ebel, O. Marsan, J. Lacaze, B. Malard, Cyclic oxidation of high-silicon spheroidal graphite iron. Corros. Sci. 192, 109854 (2021)

    Article  CAS  Google Scholar 

  19. S. Buni, N. Raman, S. Seshan, Sadhana 29, 117 (2004)

    Article  CAS  Google Scholar 

  20. M. Corny, E. Tyrala, Effect of cooling rate on microstructure and mechanical properties of thin-walled ductile iron castings. J. Mater. Eng. Perform. 22(1), 300 (2013)

    Article  Google Scholar 

  21. M. Górny, M. Kawalec, B. Gracz, M. Tupaj, Influence of cooling rate on microstructure formation of Si–Mo ductile iron castings. Metals 11, 1634 (2021)

    Article  Google Scholar 

  22. Y.F. Lin, T.S. Lui, L.H. Chen, The effect of triaxial stress on ductility and fracture morphology of ferritic spheroidal graphite cast iron. Metall. Mater. Trans. A 25A, 821 (1994)

    Article  CAS  Google Scholar 

  23. Y. Yamaguchi, S. Kiguchi, H. Sumimoto, K. Nakamura, Effect of graphite morphology on decarburized cast iron. Int. J. Cast Met. Res. 16(1–3), 137 (2003)

    Article  CAS  Google Scholar 

  24. Q. Guo et al., Effects of vermicular graphite rate on the oxidation resistance and mechanical properties of vermicular graphite iron. J. Alloys Compd. 765, 213 (2018)

    Article  CAS  Google Scholar 

  25. L. Chen et al., Mater. Today Commun. 31, 103522 (2022)

    Article  Google Scholar 

  26. G. Wang, Y. Li, Thermal conductivity of cast iron: a review. China Foundry 17(2), 85 (2020)

    Article  Google Scholar 

  27. N. Shiraki, Y. Usui, T. Kanno, Mater. Trans. 57(3), 379 (2016)

    Article  CAS  Google Scholar 

  28. M. Benedetti1, V. Fontanari, D. Lusuardi, MATEC Web of Conferences 165, 13011 (2018), Fatigue

  29. E. Kihlberga, V. Normana, P. Skoglundba, P. Moverarea, Int. J. Fatigue 145, 106112 (2021)

    Article  Google Scholar 

  30. Y. Yang, Z. Cao, Z. Lian, J. Iron Steel Res. Int. 20(6), 52 (2013)

    Article  CAS  Google Scholar 

  31. H. Lin, T. Lui, L. Chen, Mater. Trans. 44(6), 1209 (2003)

    Article  CAS  Google Scholar 

  32. T. Seifert, H. Riedel, Int. J. Fatigue 32, 1358 (2010)

    Article  CAS  Google Scholar 

  33. T. Seifert, G. Maier, A. Uihlein, K.-H. Lang, H. Riedel, Int. J. Fatigue 32, 1368 (2010)

    Article  CAS  Google Scholar 

  34. S. Lekakh, A. Bofah, L. Godlewski, M. Li, Effect of micro-structural dispersity of SiMo ductile iron on high temperature performance during static oxidation. Metals 12, 66 (2022)

    Article  Google Scholar 

  35. S. Lekakh, M. Buchely, R. O’Malley, L. Godlewski, M. Li, Thermo-cycling fatigue of SiMo ductile iron using a novel thermo-mechanical test. Int. J Fatigue 148, 106218 (2021)

    Article  CAS  Google Scholar 

  36. A.U. Kurbet, S. Dubey, A.R. Kumar, S. Razdan, Design and analysis of an exhaust manifold subjected to thermo-mechanical loading. Int. Eng. Res. J. 2, 4494 (2015)

    Google Scholar 

  37. Y. Bai, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46, 81 (2004)

    Article  Google Scholar 

  38. Y. Bai, X. Teng, T. Wierzbicki, On the application of stress triaxiality formula for plane strain fracture testing. J. Eng. Mater. Technol. 131, 1 (2009)

    Article  Google Scholar 

  39. S. Lekakh, Engineering nucleation kinetics of graphite nodules in inoculated cast iron for reducing porosity. Metall. Mat. Trans. B 50B, 890 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Great thanks go to Dr. Ron O’Malley for support research, Dr. M. Buchely for FEM simulation, students R. Osei, A. Bofah, and C. Johnson for helping with experiments.

Funding

This research was supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Award Number DE-EE0008458.

Author information

Authors and Affiliations

Authors

Contributions

SL and ML were involved in the conceptualization; SL and LB contributed to the methodology; SL and VA helped in the experiment; LG contributed to the resources; SL, LB, and ML were involved in the data analysis; SL and LG were involved in the data curation; SL contributed to writing—original draft; LB and LG contributed to review and editing; ML contributed to the supervision.

Corresponding author

Correspondence to Simon N. Lekakh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekakh, S.N., Athavale, V.A., Bartlett, L. et al. Effect of Micro-structural Dispersity of SiMo Ductile Iron on Thermal Cycling Performance. Inter Metalcast 17, 1451–1466 (2023). https://doi.org/10.1007/s40962-022-00915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00915-5

Keywords

Navigation