Skip to main content
Log in

Long-Term Thermal Stability of Cerium-Modified B319 Aluminum Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Focused on improving the elevated-temperature performance of the B319 aluminum alloy, this paper investigates, for the first time, the effects that varying Ce additions (i.e., 0.1, 0.3, 0.5, and 1.0 wt% Ce) have on the microstructure, hardness, and tensile properties of the alloy, following a conditioning process. The hardness tests were performed at room temperature before and after exposing the samples to 250 and 300 °C for 250 h. It was found that the hardness of the B319 + 0.1%Ce alloy was the highest in all three conditions, showing improvements of 9–11%. For the tensile tests, the cast alloys were tested at room temperature, 250 °C before conditioning, and at 250 and 300 °C after conditioning at their test temperatures (i.e., 250 and 300 °C) for 250 h. In all conditions, the B319 + 0.1%Ce demonstrated the greatest strength during the tensile test and consistently had YS and UTS values 6–10% greater than the unmodified B319 alloy. However, by comparing the YS and UTS values before and after conditioning, it was observed that the Ce additions had little effect on the strength retention, and in some cases (i.e., higher Ce concentrations), the strength retention was worse than for the unmodified B319 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. F. Czerwinski, D. Sediako, S. Shaha, D. Chen, High temperature aluminum alloys for automotive powertrain. Adv. Mater. Process 174, 16–20 (2016)

    Google Scholar 

  2. C.Y. Jeong, High temperature mechanical properties of Al–Si–Mg–(Cu) alloys for automotive cylinder heads. Mater. Trans. 54(4), 588–594 (2013). https://doi.org/10.2320/matertrans.M2012285

    Article  CAS  Google Scholar 

  3. A. Lombardi, C. Ravindran, R. MacKay, Improvements in mechanical properties of 319 Al alloy engine blocks through cost-effective solution heat treatment. J. Mater. Eng. Perform. 23(8), 2766–2771 (2014). https://doi.org/10.1007/s11665-014-1065-x

    Article  CAS  Google Scholar 

  4. J. Stroh, A. Piche, D. Sediako, A. Lombardi, G. Byczynski, The effects of solidification cooling rates on the mechanical properties of an aluminum inline-6 engine block, miner. Met. Mater. Ser., Light Met (2019). https://doi.org/10.1007/978-3-030-05864-7_65

    Article  Google Scholar 

  5. E. Aghaie, J. Stroh, D. Sediako, M. Smith, In-Situ Fitness-For-Service Assessment of Aluminum Alloys Developed for Automotive Powertrain Lightweighting. (Springer International Publishing, 2018), pp. 397–400. https://doi.org/10.1007/978-3-319-72284-9_53

  6. E. Vandersluis, D. Sediako, C. Ravindran, A. Elsayed, G. Byczynski, Analysis of eutectic silicon modification during solidification of al-6si using in-situ neutron diffraction. J. Alloys Compd. 736, 172–180 (2018). https://doi.org/10.1016/j.jallcom.2017.11.118

    Article  CAS  Google Scholar 

  7. D. Sediako, W. Kasprzak, In situ study of microstructure evolution in solidification of hypereutectic Al–Si alloys with application of thermal analysis and neutron diffraction. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46(9), 4160–4173 (2015). https://doi.org/10.1007/s11661-015-3007-0

    Article  CAS  Google Scholar 

  8. R. Donahue, P.A. Fabiyi, Manufacturing feasibility of all-aluminum automotive engines via application of high silicon aluminum alloy, SAE Tech. Pap. Ser., no2000-01–0061, pp. 1–11 (2000). https://doi.org/10.4271/2000-01-0061

  9. S.K. Chaudhury, D. Apelian, P. Meyer, D. Massinon, J. Morichon, Microstructure and mechanical properties of heat-treated B319 Alloy diesel cylinder heads. Metall. Mater. Trans. Phys. Metall. Mater. Sci. 46(7), 3276–3286 (2015). https://doi.org/10.1007/s11661-015-2837-0

    Article  CAS  Google Scholar 

  10. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Thermal stability of (AlSi) × (ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr. Thermochim. Acta 595, 11–16 (2014). https://doi.org/10.1016/j.tca.2014.08.037

    Article  CAS  Google Scholar 

  11. K.Y. Lee, S.L. Lee, C.T. Wu, W.C. Chen, J.C. Lin, Effects of T6 heat treatment on thermal stability and wear behaviour of Al-12.5Si-4.5Cu-1.0 Mg alloy. Mater. Sci. Technol. (United Kingdom) 28(6), 639–643 (2013). https://doi.org/10.1179/1743284711Y.0000000057

    Article  CAS  Google Scholar 

  12. L. Jin, K. Liu, X.G. Chen, Evolution of dispersoids and their effects on elevated-temperature strength and creep resistance in Al–Si–Cu 319 cast alloys with Mn and Mo additions. Mater. Sci. Eng. 770(138554), 1–11 (2020). https://doi.org/10.1016/j.msea.2019.138554

    Article  CAS  Google Scholar 

  13. J. Stroh, D. Sediako, D. Weiss, The effects of iron-bearing intermetallics on the fitness-for-service performance of a rare-earth-modified A356 alloy for next generation automotive powertrains. Metals (Basel) 11(5), 1–20 (2021). https://doi.org/10.3390/met11050788

    Article  CAS  Google Scholar 

  14. J. Stroh, D. Sediako, D. Weiss, The effect of rare earth mischmetal on the high temperature tensile properties of an A356 aluminum alloy. Light Met. 2021, 184–191 (2021). https://doi.org/10.1007/978-3-030-65396-5_27

    Article  Google Scholar 

  15. C. Xu, W. Xiao, S. Hanada, H. Yamagata, C. Ma, The effect of scandium addition on microstructure and mechanical properties of Al–Si–Mg alloy: a multi-refinement modifier. Mater. Charact. 110, 160–169 (2015). https://doi.org/10.1016/j.matchar.2015.10.030

    Article  CAS  Google Scholar 

  16. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Improving high-temperature tensile and low-cycle fatigue behavior of Al–Si–Cu–Mg alloys through micro-additions of Ti V, and Zr. Metall. Mater. Trans. Phys. Metall. Mater. Sci. 46(7), 3063–3078 (2015). https://doi.org/10.1007/s11661-015-2880-x

    Article  CAS  Google Scholar 

  17. J. Royset, N. Ryum, Scandium in aluminum alloys. Int. Mater. Rev. 50(1), 19–44 (2005). https://doi.org/10.1179/174328005X14311

    Article  CAS  Google Scholar 

  18. S. Seifeddine, S. Johansson, I. Svensson, The influence Of cooling rate and manganese content on the-Al 5 fesi phase formation and mechanical properties Of Al–Si-based alloys. Mater. Sci. Eng. A 490, 385–390 (2008). https://doi.org/10.1016/j.msea.2008.01.056

    Article  CAS  Google Scholar 

  19. A.R. Farkoosh, M. Pekguleryuz, The effects of manganese on the Τ-phase and creep resistance in Al–Si–Cu–Mg–Ni alloys. Mater. Sci. Eng. A 582, 248–256 (2013). https://doi.org/10.1016/j.msea.2013.06.030

    Article  CAS  Google Scholar 

  20. B.F. Kabirian, R. Mahmudi, Effects of zirconium additions on the microstructure of as-cast and aged AZ91 magnesium alloy. Adv. Eng. Mater. 11(3), 189–193 (2009). https://doi.org/10.1002/adem.200800223

    Article  CAS  Google Scholar 

  21. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Effect of Cr Ti, V, and Zr micro-additions on microstructure and mechanical properties of the Al–Si–Cu–Mg cast alloy. Metall. Mater. Trans. Phys. Metall. Mater. Sci. 47(5), 2396–2409 (2016). https://doi.org/10.1007/s11661-016-3365-2

    Article  CAS  Google Scholar 

  22. D. Weiss, High Performance Aluminum Casting Alloys for Engine Applications, SAE Tech. Pap. Ser., 1(2016-32–0019), pp. 1–5 (2016). https://doi.org/10.4271/2016-32-0019

  23. J. Stroh, D. Sediako, D. Weiss, Development of cerium-reinforced specialty aluminum alloy with application of X-ray and neutron diffraction. Int. J. Met. 15(1), 29–39 (2021). https://doi.org/10.1007/s40962-020-00467-6

    Article  CAS  Google Scholar 

  24. Z. Sims et al., High performance aluminum-cerium alloys for high-temperature applications. Mater. Horiz. 4(6), 1070–1078 (2017). https://doi.org/10.1039/c7mh00391a

    Article  CAS  Google Scholar 

  25. J. Stroh, Development of Precipitation-Strengthened Aluminum Alloys and Manufacturing Processes for Next Generation Automotive Powertrains, PhD Dissertation, University of British Columbia Okanagan, (2021). https://doi.org/10.14288/1.0396852

  26. M.G. Mahmoud, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of the addition of La and Ce on the solidification behavior of Al–Cu and Al–Si–Cu cast alloys. Int. J. Met. 14(1), 191–206 (2020). https://doi.org/10.1007/s40962-019-00351-y

    Article  CAS  Google Scholar 

  27. M.G. Mahmoud, Y. Zedan, A.M. Samuel, V. Songmene, F.H. Samuel, The use of rare earth metals in Al–Si–Cu casting alloys. Int. J. Met. (2021). https://doi.org/10.1007/s40962-021-00640-5

    Article  Google Scholar 

  28. M.F. Ibrahim, M.H. Abdelaziz, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of rare earth metals on the mechanical properties and fractography of Al–Si-based alloys. Int. J. Met. 14(1), 108–124 (2020). https://doi.org/10.1007/s40962-019-00336-x

    Article  CAS  Google Scholar 

  29. D. Weiss, Improved high-temperature aluminum alloys containing cerium. J. Mater. Eng. Perform. 28(4), 1093–1908 (2019). https://doi.org/10.1007/s11665-019-3884-2

    Article  CAS  Google Scholar 

  30. E. Aghaie, J. Stroh, D. Sediako, A. Rashidi, A.S. Milani, Improving the mechanical properties of the B319 aluminum alloy by addition of cerium. Mater. Sci. Eng. A 793(139899), 1–9 (2020). https://doi.org/10.1016/j.msea.2020.139899

    Article  CAS  Google Scholar 

  31. M. Mahmoud, E. Elgallad, M. Ibrahim, F. Samuel, Effect of rare earth metals on porosity formation in A356 alloy. Int. J. Met. 12(2), 251–265 (2018). https://doi.org/10.1007/s40962-017-0156-5

    Article  Google Scholar 

  32. E. Rincon, H.F. Lopez, M.M. Cisneros, H. Mancha, Temperature effects on the tensile properties of cast and heat treated aluminum alloy A319. Mater. Sci. Eng. A 519(1–2), 128–140 (2009). https://doi.org/10.1016/j.msea.2009.05.022

    Article  CAS  Google Scholar 

  33. D. Sediako, W. Kasprzak, F. Czerwinski, A. Nabawy, A. Farkoosh, High temperature creep evolution In Al–Si alloys developed for automotive powertrain applications: a neutron in-situ study on Hkl-plane creep response. Light Met. 2016, 131–136 (2016). https://doi.org/10.1002/9781119274780.ch23

    Article  Google Scholar 

  34. F. Xia, J. Li, Y. Guo, Z. Yang, Microstructure evolution and mechanical properties of an Al–Si–Cu–Mg–Ni aluminium alloy after thermal exposure. Maertials Sci. Forum 765, 486–490 (2013). https://doi.org/10.4028/www.scientific.net/MSF.765.486

    Article  CAS  Google Scholar 

  35. A. Školáková, P. Novák, L. Mejzlíková, F. Pruša, P. Salvetr, D. Vojtěch, Structure and mechanical properties of Al–Cu–Fe–X alloys with excellent thermal stability. Materials (Basel) 10(11), 1–19 (2017). https://doi.org/10.3390/ma10111269

    Article  CAS  Google Scholar 

  36. ASTM, E3-11 Standard Guide for Preparation of Metallographic Specimens, ASTM Copyright., vol. i, pp. 1–12 (2011). https://doi.org/10.1520/E0003-11R17

  37. ASTM International, E384-17 Standard Test Method for Microindentation Hardness of Materials, pp. 1-40 (2017). https://doi.org/10.1520/E0384-17

  38. M. Farina, P. Bell, C. Raimundo, F. Ferreira, B. Dedavid, P. Alegre, Effects of solidification rate in the microstructure of Al–Si5Cu3 aluminum cast alloy. Mater. Res. 20(2), 273–278 (2017). https://doi.org/10.1590/1980-5373-MR-2017-0083

    Article  Google Scholar 

  39. Y. Liu, M. Liu, L. Luo, J. Wang, C. Liu, Solidification behavior of AA2618 aluminum alloy and influence of cooling rate. Materials (Basel) 7(12), 7875–7890 (2014). https://doi.org/10.3390/ma7127875

    Article  Google Scholar 

  40. A. Lombardi, D. Sediako, C. Ravindran, M. Barati, Analysis of precipitation, dissolution and incipient melting of Al2Cu in B206 Al alloy using in-situ neutron diffraction. J. Alloys Compd. 784, 1017–1025 (2019). https://doi.org/10.1016/j.jallcom.2019.01.104

    Article  CAS  Google Scholar 

  41. Y. Wu, J. Xiong, R. Lai, X. Zhang, Z. Guo, The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization. J. Alloys Compd. 475(1–2), 332–338 (2009). https://doi.org/10.1016/j.jallcom.2008.07.032

    Article  CAS  Google Scholar 

  42. T. Gao, Y. Wu, C. Li, X. Liu, Morphologies and growth mechanisms of α-Al(FeMn)Si in Al–Si–Fe–Mn alloy. Mater. Lett. 110, 191–194 (2013). https://doi.org/10.1016/j.matlet.2013.08.039

    Article  CAS  Google Scholar 

  43. F. Prusa et al., High-strength ultra-fine-grained hypereutectic Al–Si–Fe–X (X = Cr, Mn) alloys prepared by short-term mechanical alloying and spark plasma sintering. Materials (Basel) 9(12), 973 (2016). https://doi.org/10.3390/ma9120973

    Article  CAS  Google Scholar 

  44. H. Huang, Y. Cai, H. Cui, J. Huang, J. He, Influence of Mn addition on microstructure and phase formation of spray-deposited Al-25Si-xFe-yMn alloy. Mater. Sci. Eng. A 502(1–2), 118–125 (2009). https://doi.org/10.1016/j.msea.2008.10.005

    Article  CAS  Google Scholar 

  45. Y. Zedan, F. Samuel, A. Samuel, H. Doty, Effects of Fe intermetallics on the machinability of heat-treated Al-(7–11)% Si alloys. J. Mater. Process. Technol. 210(2), 245–257 (2010). https://doi.org/10.1016/j.jmatprotec.2009.09.007

    Article  CAS  Google Scholar 

  46. A. Ibrahim, E. Elgallad, A. Samuel, H. Doty, F. Samuel, Effects of addition of transition metals on intermetallic precipitation in Al-2%Cu–1%Si based alloys. Int. J. Met. 12(3), 1–15 (2018). https://doi.org/10.1007/s40962-017-0196-x

    Article  CAS  Google Scholar 

  47. A. Samuel, E. Elgallad, M. Mahmoud, H. Doty, S. Valtierra, F. Samuel, Rare earth metal-based intermetallics formation in Al–Cu–Mg and Al–Si–Cu–Mg alloys: a metallographic study. Adv. Mater. Sci. Eng. 2018, 1–15 (2018). https://doi.org/10.1155/2018/7607465

    Article  CAS  Google Scholar 

  48. A. Sinha, Z. Farhat, A study of porosity effect on tribological behavior of cast Al A380M and sintered Al 6061 alloys. J. Surf. Eng. Mater. Adv. Technol. 5(1), 1–16 (2015). https://doi.org/10.4236/jsemat.2015.51001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stroh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaie, E., Stroh, J. & Sediako, D. Long-Term Thermal Stability of Cerium-Modified B319 Aluminum Alloy. Inter Metalcast 17, 682–695 (2023). https://doi.org/10.1007/s40962-022-00835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00835-4

Keywords

Navigation