Skip to main content
Log in

Relationship Between Critical Solid Fraction and Dendrite Coherency Point in Al–Si Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

For simulations of misrun formations in castings, the critical fraction solid (FScr) at which the melt flow stopped in the mold is required. In this work, FScr for Al–Si alloys was obtained by comparing the simulated spiral fluidity test lengths at different FScr values with experimental ones casted into graphite and sand molds. The dendrite coherency temperature was obtained via thermal analysis, and the dendrite coherency fraction solid (FScoh) was calculated using the Thermo-Calc software. It was established that FScr and FScoh for Al–Si alloys are very similar, allowing the use of FScoh for casting process simulations instead of FScr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. M. Di Sabatino, L. Arnberg, D. Apelian, Inter. Metalcast. 2, 17 (2008). https://doi.org/10.1007/BF03355430

    Article  Google Scholar 

  2. S.-Y. Sung, Y.-J. Kim, Intermetallics 15, 468 (2007). https://doi.org/10.1016/j.intermet.2006.07.009

    Article  CAS  Google Scholar 

  3. J. Jakumeit, E. Subasic, M. Bünck, Shape Casting: 5th International Symposium 2014. (John Wiley & Sons, San Diego, 2014), pp. 253–260. https://doi.org/10.1007/978-3-319-48130-2_31

  4. N.J. Humphreys, D. McBride, D.M. Shevchenko, T.N. Croft, P. Withey, N.R. Green, M. Cross, Appl. Math. Model. 37, 7633 (2013). https://doi.org/10.1016/j.apm.2013.03.030

    Article  Google Scholar 

  5. T.O. Mbuya, Trans. Am. Foundry. Soc. 114, 163 (2006)

    CAS  Google Scholar 

  6. M. Di Sabatino, L. Arnberg, Metall. Sci. Technol. 22, 9 (2004)

    Google Scholar 

  7. K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, M. Chakraborty, J. Alloy. Compd. 456, 201 (2008). https://doi.org/10.1016/j.jallcom.2007.02.038

    Article  CAS  Google Scholar 

  8. Y. Motoyama, H. Tokunaga, M. Yoshida, T. Maruyama, T. Okane, J. Mater. Process. Tech. 276, 116394 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116394

    Article  CAS  Google Scholar 

  9. V.E. Bazhenov, A.V. Petrova, A.V. Koltygin, Inter. Metalcast. 12, 514 (2018). https://doi.org/10.1007/s40962-017-0188-x

    Article  CAS  Google Scholar 

  10. M. Di Sabatino, L. Arnberg, F. Bonollo, Metall. Sci. Technol. 23, 3 (2005)

    Google Scholar 

  11. H. Huang, Y.X. Wang, P.H. Fu, L.M. Peng, H.Y. Jiang, W.Y. Xu, Int. J. Cast. Met. Res. 26, 213 (2013). https://doi.org/10.1179/1743133613Y.0000000055

    Article  CAS  Google Scholar 

  12. J. Major, M. Hartlieb, Inter. Metalcast. 3, 43 (2009). https://doi.org/10.1007/BF03355452

    Article  CAS  Google Scholar 

  13. S. O’Connor, Adv. Mater. Process. 166, 29 (2008)

    Google Scholar 

  14. S. O’Connor, AMMTIAC Q. 2, 3 (2007)

    CAS  Google Scholar 

  15. L. Jia, D. Xu, M. Li, J. Guo, H. Fu, Met. Mater. Int. 18, 55 (2012). https://doi.org/10.1007/s12540-012-0007-0

    Article  CAS  Google Scholar 

  16. V. Zanchuk, Adv. Mater. Process. 162, 66 (2004)

    CAS  Google Scholar 

  17. V. Zanchuk, Die. Cast. Eng. 1, 38 (2006)

    Google Scholar 

  18. L. Wang, H. Yan, J. Teng, X. Liu, X. Wang, Y. Su, J. Guo, J. Mater. Res. Tech. 9, 6933 (2020). https://doi.org/10.1016/j.jmrt.2020.02.071

    Article  CAS  Google Scholar 

  19. G. Baumeister, D. Buqezi-Ahmeti, J. Glaser, H.-J. Ritzhaupt-Kleissl, Microsyst. Technol. 17, 289 (2011). https://doi.org/10.1007/s00542-011-1237-7

    Article  CAS  Google Scholar 

  20. W.C. Chen, F.Y. Teng, C.C. Hung, Mater. Sci. Eng. C. 35, 231 (2014). https://doi.org/10.1016/j.msec.2013.11.014

    Article  CAS  Google Scholar 

  21. A.K. Dahle, P.A. Tøndel, C.J. Paradies, L. Arnberg, Metall. Mater. Trans. A. 27, 2305 (1996). https://doi.org/10.1007/BF02651885

    Article  Google Scholar 

  22. A.K. Dahle, L. Arnberg, Acta. Mater. 45, 547 (1997). https://doi.org/10.1016/S1359-6454(96)00203-0

    Article  CAS  Google Scholar 

  23. L. Yang, W. Li, J. Du, K. Wang, P. Tang, Thermochim. Acta. 645, 7 (2016). https://doi.org/10.1016/j.tca.2016.10.013

    Article  CAS  Google Scholar 

  24. N.L.M. Veldman, A.K. Dahle, D.H. StJohn, L. Arnberg, Metall. Mater. Trans. A. 32, 147 (2001). https://doi.org/10.1007/s11661-001-0110-1

    Article  Google Scholar 

  25. S.L. Backerud, G.W. Sigworth, AFS Trans. 97, 459 (1989)

    Google Scholar 

  26. H. Jiang, W.T. Kierkus, J.H. Sokolowski, AFS Trans. 107, 169 (1999)

    CAS  Google Scholar 

  27. L. Arnberg, G. Chai, L. Backerud, Mater. Sci. Eng. A. 173, 101 (1993). https://doi.org/10.1016/0921-5093(93)90195-K

    Article  Google Scholar 

  28. R. Fuoco, E.R. Correa, M. de Andrade Bastos, AFS Trans. 106, 401 (1998)

    CAS  Google Scholar 

  29. V.E. Bazhenov, A.V. Petrova, A.A. Rizhsky, Yu.V. Tselovalnik, A.V. Sannikov, V.D. Belov, Inter. Metalcast. 15, 319 (2021). https://doi.org/10.1007/s40962-020-00468-5

    Article  CAS  Google Scholar 

  30. ESI Group, ProCAST 2010.0 User's Manual (ESI Group, 2010), https://myesi.esi-group.com/system/files/documentation/ProCAST/2010/ProCAST_20100_UM.pdf. Accessed 1 August 2020

  31. L. Yang, L.H. Chai, Y.F. Liang, Y.W. Zhang, C.L. Bao, S.B. Liu, J.P. Lin, Intermetallics 66, 149 (2015). https://doi.org/10.1016/j.intermet.2015.07.006

    Article  CAS  Google Scholar 

  32. S.-L. Lu, F.-R. Xiao, Z.-H. Guo, L.-J. Wang, H.-Y. Li, B. Liao, Appl. Therm. Eng. 93, 518 (2016). https://doi.org/10.1016/j.applthermaleng.2015.09.114

    Article  CAS  Google Scholar 

  33. J.A. Dantzig, M. Rappaz, Solidification (EPFL Press, Lausanne, 2009), pp. 105–151

    Book  Google Scholar 

  34. E.I. Zhmurikov, I.V. Savchenko, S.V. Stankus, O.S. Yatsuk, L.B. Tecchio, Nucl. Instrum. Method. Phys. Res. Sect. A. 674, 79 (2012). https://doi.org/10.1016/j.nima.2012.01.015

    Article  CAS  Google Scholar 

  35. G. Palumbo, V. Piglionico, A. Piccininni, P. Guglielmi, D. Sorgente, L. Tricarico, Appl. Therm. Eng. 78, 682 (2015). https://doi.org/10.1016/j.applthermaleng.2014.11.046

    Article  CAS  Google Scholar 

  36. W.P. Goss, R.G. Miller. Proceedings of thermal performance of the exterior envelopes of buildings. (ASHRAE, Atlanta, 1992), pp. 193–203

  37. V.E. Bazhenov, Yu.V. Tselovalnik, A.V. Koltygin, V.D. Belov, Int. Metalcast. 15, 625 (2021). https://doi.org/10.1007/s40962-020-00495-2

    Article  CAS  Google Scholar 

  38. V.E. Bazhenov, A.V. Koltygin, Yu.V. Tselovalnik, Russ. J. Non-Ferr. Met. 57, 686 (2016). https://doi.org/10.3103/S1067821216070038

    Article  Google Scholar 

  39. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Calphad 26, 273 (2002). https://doi.org/10.1016/S0364-5916(02)00037-8

    Article  CAS  Google Scholar 

  40. Thermo-Calc Software TCAL4 Aluminium alloys database version 4 (accessed June 1, 2020)

  41. ASM International Handbook Committee. ASM Handbook, Properties and selection: nonferrous alloys and special-purpose materials, vol. 2, tenth edn. (ASM International, Materials Park, 2002), pp. 624–1546. https://doi.org/10.31399/asm.hb.v02.9781627081627

  42. Z. Wang, H. Wang, X. Li, D. Wang, Q. Zhang, G. Chen, Z. Ren, Appl. Therm. Eng. 89, 204 (2015). https://doi.org/10.1016/j.applthermaleng.2015.05.037

    Article  CAS  Google Scholar 

  43. R.A. Overfelt, S.I. Bakhtiyarov, High. Temp. High. Press. 34, 401 (2002). https://doi.org/10.1068/htjr052

    Article  CAS  Google Scholar 

  44. X. Wang, J. Liu, Y. Zhang, H. Di, Y. Jiang, Energy. Convers. Manag. 47, 2211 (2006). https://doi.org/10.1016/j.enconman.2005.12.004

    Article  Google Scholar 

  45. V.E. Bazhenov, M.A. Magura, Mater. Sci. Technol. 34, 1287 (2018). https://doi.org/10.1080/02670836.2018.1425237

    Article  CAS  Google Scholar 

  46. O. Cabrera, M. Ramírez, B. Campillo, C. González-Rivera, Mater. Manuf. Process. 23, 46 (2007). https://doi.org/10.1080/10426910701524493

    Article  CAS  Google Scholar 

  47. G. Chai, L. Bäckerud, T. Rølland, L. Arnberg, Metall. Mater. Trans. A. 26, 965 (1995). https://doi.org/10.1007/BF02649093

    Article  Google Scholar 

  48. I. Gómez, E. Viteri, J. Montero, M. Djurdjevic, G. Huber, Appl. Sci. 8, 1236 (2018). https://doi.org/10.3390/app8081236

    Article  CAS  Google Scholar 

  49. A.M. Mitrašinović, F.C. Robles Hernández, Mater. Sci. Eng. A. 540, 63 (2012). https://doi.org/10.1007/BF02649093

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, project number 19-38-90003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Bazhenov.

Ethics declarations

Conflict of interest

The authors report no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, V.E., Petrova, A.V., Sannikov, A.V. et al. Relationship Between Critical Solid Fraction and Dendrite Coherency Point in Al–Si Alloys. Inter Metalcast 17, 284–296 (2023). https://doi.org/10.1007/s40962-022-00772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00772-2

Keywords

Navigation