Abstract
For simulations of misrun formations in castings, the critical fraction solid (FScr) at which the melt flow stopped in the mold is required. In this work, FScr for Al–Si alloys was obtained by comparing the simulated spiral fluidity test lengths at different FScr values with experimental ones casted into graphite and sand molds. The dendrite coherency temperature was obtained via thermal analysis, and the dendrite coherency fraction solid (FScoh) was calculated using the Thermo-Calc software. It was established that FScr and FScoh for Al–Si alloys are very similar, allowing the use of FScoh for casting process simulations instead of FScr.
Similar content being viewed by others
References
M. Di Sabatino, L. Arnberg, D. Apelian, Inter. Metalcast. 2, 17 (2008). https://doi.org/10.1007/BF03355430
S.-Y. Sung, Y.-J. Kim, Intermetallics 15, 468 (2007). https://doi.org/10.1016/j.intermet.2006.07.009
J. Jakumeit, E. Subasic, M. Bünck, Shape Casting: 5th International Symposium 2014. (John Wiley & Sons, San Diego, 2014), pp. 253–260. https://doi.org/10.1007/978-3-319-48130-2_31
N.J. Humphreys, D. McBride, D.M. Shevchenko, T.N. Croft, P. Withey, N.R. Green, M. Cross, Appl. Math. Model. 37, 7633 (2013). https://doi.org/10.1016/j.apm.2013.03.030
T.O. Mbuya, Trans. Am. Foundry. Soc. 114, 163 (2006)
M. Di Sabatino, L. Arnberg, Metall. Sci. Technol. 22, 9 (2004)
K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, M. Chakraborty, J. Alloy. Compd. 456, 201 (2008). https://doi.org/10.1016/j.jallcom.2007.02.038
Y. Motoyama, H. Tokunaga, M. Yoshida, T. Maruyama, T. Okane, J. Mater. Process. Tech. 276, 116394 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116394
V.E. Bazhenov, A.V. Petrova, A.V. Koltygin, Inter. Metalcast. 12, 514 (2018). https://doi.org/10.1007/s40962-017-0188-x
M. Di Sabatino, L. Arnberg, F. Bonollo, Metall. Sci. Technol. 23, 3 (2005)
H. Huang, Y.X. Wang, P.H. Fu, L.M. Peng, H.Y. Jiang, W.Y. Xu, Int. J. Cast. Met. Res. 26, 213 (2013). https://doi.org/10.1179/1743133613Y.0000000055
J. Major, M. Hartlieb, Inter. Metalcast. 3, 43 (2009). https://doi.org/10.1007/BF03355452
S. O’Connor, Adv. Mater. Process. 166, 29 (2008)
S. O’Connor, AMMTIAC Q. 2, 3 (2007)
L. Jia, D. Xu, M. Li, J. Guo, H. Fu, Met. Mater. Int. 18, 55 (2012). https://doi.org/10.1007/s12540-012-0007-0
V. Zanchuk, Adv. Mater. Process. 162, 66 (2004)
V. Zanchuk, Die. Cast. Eng. 1, 38 (2006)
L. Wang, H. Yan, J. Teng, X. Liu, X. Wang, Y. Su, J. Guo, J. Mater. Res. Tech. 9, 6933 (2020). https://doi.org/10.1016/j.jmrt.2020.02.071
G. Baumeister, D. Buqezi-Ahmeti, J. Glaser, H.-J. Ritzhaupt-Kleissl, Microsyst. Technol. 17, 289 (2011). https://doi.org/10.1007/s00542-011-1237-7
W.C. Chen, F.Y. Teng, C.C. Hung, Mater. Sci. Eng. C. 35, 231 (2014). https://doi.org/10.1016/j.msec.2013.11.014
A.K. Dahle, P.A. Tøndel, C.J. Paradies, L. Arnberg, Metall. Mater. Trans. A. 27, 2305 (1996). https://doi.org/10.1007/BF02651885
A.K. Dahle, L. Arnberg, Acta. Mater. 45, 547 (1997). https://doi.org/10.1016/S1359-6454(96)00203-0
L. Yang, W. Li, J. Du, K. Wang, P. Tang, Thermochim. Acta. 645, 7 (2016). https://doi.org/10.1016/j.tca.2016.10.013
N.L.M. Veldman, A.K. Dahle, D.H. StJohn, L. Arnberg, Metall. Mater. Trans. A. 32, 147 (2001). https://doi.org/10.1007/s11661-001-0110-1
S.L. Backerud, G.W. Sigworth, AFS Trans. 97, 459 (1989)
H. Jiang, W.T. Kierkus, J.H. Sokolowski, AFS Trans. 107, 169 (1999)
L. Arnberg, G. Chai, L. Backerud, Mater. Sci. Eng. A. 173, 101 (1993). https://doi.org/10.1016/0921-5093(93)90195-K
R. Fuoco, E.R. Correa, M. de Andrade Bastos, AFS Trans. 106, 401 (1998)
V.E. Bazhenov, A.V. Petrova, A.A. Rizhsky, Yu.V. Tselovalnik, A.V. Sannikov, V.D. Belov, Inter. Metalcast. 15, 319 (2021). https://doi.org/10.1007/s40962-020-00468-5
ESI Group, ProCAST 2010.0 User's Manual (ESI Group, 2010), https://myesi.esi-group.com/system/files/documentation/ProCAST/2010/ProCAST_20100_UM.pdf. Accessed 1 August 2020
L. Yang, L.H. Chai, Y.F. Liang, Y.W. Zhang, C.L. Bao, S.B. Liu, J.P. Lin, Intermetallics 66, 149 (2015). https://doi.org/10.1016/j.intermet.2015.07.006
S.-L. Lu, F.-R. Xiao, Z.-H. Guo, L.-J. Wang, H.-Y. Li, B. Liao, Appl. Therm. Eng. 93, 518 (2016). https://doi.org/10.1016/j.applthermaleng.2015.09.114
J.A. Dantzig, M. Rappaz, Solidification (EPFL Press, Lausanne, 2009), pp. 105–151
E.I. Zhmurikov, I.V. Savchenko, S.V. Stankus, O.S. Yatsuk, L.B. Tecchio, Nucl. Instrum. Method. Phys. Res. Sect. A. 674, 79 (2012). https://doi.org/10.1016/j.nima.2012.01.015
G. Palumbo, V. Piglionico, A. Piccininni, P. Guglielmi, D. Sorgente, L. Tricarico, Appl. Therm. Eng. 78, 682 (2015). https://doi.org/10.1016/j.applthermaleng.2014.11.046
W.P. Goss, R.G. Miller. Proceedings of thermal performance of the exterior envelopes of buildings. (ASHRAE, Atlanta, 1992), pp. 193–203
V.E. Bazhenov, Yu.V. Tselovalnik, A.V. Koltygin, V.D. Belov, Int. Metalcast. 15, 625 (2021). https://doi.org/10.1007/s40962-020-00495-2
V.E. Bazhenov, A.V. Koltygin, Yu.V. Tselovalnik, Russ. J. Non-Ferr. Met. 57, 686 (2016). https://doi.org/10.3103/S1067821216070038
J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Calphad 26, 273 (2002). https://doi.org/10.1016/S0364-5916(02)00037-8
Thermo-Calc Software TCAL4 Aluminium alloys database version 4 (accessed June 1, 2020)
ASM International Handbook Committee. ASM Handbook, Properties and selection: nonferrous alloys and special-purpose materials, vol. 2, tenth edn. (ASM International, Materials Park, 2002), pp. 624–1546. https://doi.org/10.31399/asm.hb.v02.9781627081627
Z. Wang, H. Wang, X. Li, D. Wang, Q. Zhang, G. Chen, Z. Ren, Appl. Therm. Eng. 89, 204 (2015). https://doi.org/10.1016/j.applthermaleng.2015.05.037
R.A. Overfelt, S.I. Bakhtiyarov, High. Temp. High. Press. 34, 401 (2002). https://doi.org/10.1068/htjr052
X. Wang, J. Liu, Y. Zhang, H. Di, Y. Jiang, Energy. Convers. Manag. 47, 2211 (2006). https://doi.org/10.1016/j.enconman.2005.12.004
V.E. Bazhenov, M.A. Magura, Mater. Sci. Technol. 34, 1287 (2018). https://doi.org/10.1080/02670836.2018.1425237
O. Cabrera, M. Ramírez, B. Campillo, C. González-Rivera, Mater. Manuf. Process. 23, 46 (2007). https://doi.org/10.1080/10426910701524493
G. Chai, L. Bäckerud, T. Rølland, L. Arnberg, Metall. Mater. Trans. A. 26, 965 (1995). https://doi.org/10.1007/BF02649093
I. Gómez, E. Viteri, J. Montero, M. Djurdjevic, G. Huber, Appl. Sci. 8, 1236 (2018). https://doi.org/10.3390/app8081236
A.M. Mitrašinović, F.C. Robles Hernández, Mater. Sci. Eng. A. 540, 63 (2012). https://doi.org/10.1007/BF02649093
Acknowledgements
The reported study was funded by RFBR, project number 19-38-90003.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors report no potential conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bazhenov, V.E., Petrova, A.V., Sannikov, A.V. et al. Relationship Between Critical Solid Fraction and Dendrite Coherency Point in Al–Si Alloys. Inter Metalcast 17, 284–296 (2023). https://doi.org/10.1007/s40962-022-00772-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40962-022-00772-2