Skip to main content

Advertisement

Log in

Rejuvenation of Nickel-Based Superalloy Experiencing Creep via Use of Hot Isostatic Pressing and Heat Treatment

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Turbine blades (rotary parts) and vanes (stationary components) are made from nickel-based superalloys. The replacement of high-cost aviation/industrial blades and vanes is the most important task in the turbojet engine repair industry. These parts which are manufactured by the investment casting process withstand high temperatures and high stresses/strains during the service. Depending on the temperature and strain rate, creep failure occurs by various mechanisms in superalloys. Cavitation is one of the modes of creep failure. In order to facilitate creep life extension of hot section parts and reduce overhaul of engine costs, alloy rejuvenation procedures have been investigated and implemented over the past few years. This study introduces a method including hot isostatic pressing (HIPing) and a post-HIP heat treatment for recovering the creep strength of the cast polycrystalline nickel-based superalloy Rene®80. To certify the positive effect of introduced method on the renovation of creep properties, the creep rupture tests at 850±1 °C/360±2 MPa were assessed. As revealed by the results of this evaluation, the creep properties of Rene®80 can be recovered by HIP procedure (1205 °C /150MPa /4 h) in combination with a post-HIP heat treatment (1093 °C /4hr + 1054 °C /4hr + 845 °C /24hr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. J. Błachnio, J. Spychała, D. Zasada, Analysis of structural changes in a gas turbine blade as a result of high temperature and stress. Eng. Fail. Anal. 127, 105554 (2021). https://doi.org/10.1016/j.engfailanal.2021.105554

    Article  CAS  Google Scholar 

  2. H. Kuhn (volume coordinator), Mechanical Testing and Evaluation, Volume 8, ASM handbook, 2000

  3. B. Swain, P. Mallick, S. Patel, R. Roshan, S.S. Mohapatra, S. Bhuyan, M. Priyadarshini, B. Behera, S. Samal, A. Behera, Failure analysis and materials development of gas turbine blades. Mater. Today Proc. 33, 5143 (2020). https://doi.org/10.1016/j.matpr.2020.02.859

    Article  CAS  Google Scholar 

  4. P. Puspitasari, A. Andoko, P. Kurniawan, Failure analysis of a gas turbine blade: a review. IOP Conf. Series: Mater. Sci. Eng. 1034, 012156 (2021). https://doi.org/10.1088/1757-899X/1034/1/012156

    Article  CAS  Google Scholar 

  5. W. T. Becker, R. J. Shipley (volume coordinators), Failure Analysis and Prevention, Volume 11, ASM handbook, 2002

  6. B. Ruttert, D. Bürger, L. Mujica Roncery, A. Basir Parsa, P. Wollgramm, G. Eggeler, W. Theisen, Rejuvenation of creep resistance of a Ni-base single-crystal superalloy by hot isostatic pressing. Mater. Design. 134, 418–425 (2017). https://doi.org/10.1016/j.matdes.2017.08.059

    Article  CAS  Google Scholar 

  7. H. Zhang, A. Wang, Z. Wen, Z. Yue, C. Zhang, Effects of hot isostatic pressing (HIP) on microstructure and mechanical properties of K403 nickel-based superalloy. High Temp. Mater. Process. 35(5), 463–471 (2015). https://doi.org/10.1515/htmp-2014-0210

    Article  CAS  Google Scholar 

  8. B. Ruttert, I.L. Galilea, L.M. Roncery, W. Theisen, Microstructural design of Ni-base superalloys by hot isostatic pressing. Mater. Res. Proc. 10, 107–113 (2019). https://doi.org/10.21741/9781644900031-15

    Article  CAS  Google Scholar 

  9. Y.L. Kuo, T. Nagahari, K. Kakehi, The effect of post-processes on the microstructure and creep properties of alloy718 built up by selective laser melting. Materials 11, 1–13 (2018). https://doi.org/10.3390/ma11060996

    Article  CAS  Google Scholar 

  10. A.I. Epishin, T. Link, B. Fedelich, I.L. Svetlov, E.R. Golubovskiy, Hot isostatic pressing of single-crystal nickel-base superalloys: mechanism of pore closure and effect on mechanical properties. MATEC Web Conf. 14, 08003 (2014). https://doi.org/10.1051/matecconf/20141408003

    Article  Google Scholar 

  11. J. Wang, Z. Jiang, Application research progress of hot isostatic pressing technology in nickel-based single crystal superalloy, E3S Web of Conferences 155, 01012 (2020). Doi: https://doi.org/10.1051/e3sconf/202015501012

  12. C.L. Qiu, M.M. Attallah, X.H. Wu, P. Andrews, Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Mater. Sci. Eng. A. 564, 176–185 (2013). https://doi.org/10.1016/j.msea.2012.11.084

    Article  CAS  Google Scholar 

  13. S. Yang, J. Yun, C.S. Seok, Rejuvenation of IN738LC gas-turbine blades using hot isostatic pressing and a series of heat treatments. J. Mech. Sci. Technol. 34(11), 4605–4611 (2020). https://doi.org/10.1007/s12206-020-1018-2

    Article  Google Scholar 

  14. K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun, Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy. J. Mater. Sci. Technol. 60, 206–215 (2021). https://doi.org/10.1016/j.jmst.2020.05.032

    Article  CAS  Google Scholar 

  15. R. Acharya, R. Bansal, J.J. Gambone, M.A. Kaplan, G.E. Fuchs, N.G. Rudawski, S. Das, Additive manufacturing and characterization of rene 80 superalloy processed through scanning laser epitaxy for turbine engine hot-section component repair. Adv. Eng. Mater. 17, 942–950 (2015). https://doi.org/10.1002/adem.201400589

    Article  CAS  Google Scholar 

  16. R. C. Reed, The superalloys fundementals and applications, Cambridge University Press, 2006, pp. 51-53

  17. J. Safari, S. Nategh, On the heat treatment of Rene-80 nickel-base superalloy. J. Mater. Proc. Tech. 176, 240–250 (2006). https://doi.org/10.1016/j.jmatprotec.2006.03.165

    Article  CAS  Google Scholar 

  18. M.M. Barjesteh, S.M. Abbasi, K. Zangeneh-Madar, K. Shirvani, The effect of heat treatment on characteristics of the gamma prime phase and hardness of the nickel-based superalloy Rene80. Mater. Chem. Phys. 227, 46–55 (2019). https://doi.org/10.1016/j.matchemphys.2019.01.038

    Article  CAS  Google Scholar 

  19. C. Yang, Y. Xu, H. Nie, X. Xiao, G. Jia, Z. Shen, Effects of heat treatments on the microstructure and mechanical properties of Rene80. Mater. Design. 43, 66–73 (2013). https://doi.org/10.1016/j.matdes.2012.06.039

    Article  CAS  Google Scholar 

  20. D. A. DeAntonio, D. Duhl, T. Howson, M. F. Rothman, Heat Treating of Superalloys, Heat Treating, Volume 4, ASM handbook, 1991

  21. M.F. Moreira, L.B. Fantin, F.B. Neto, C.R.F. Azevedo, Microstructural and mechanical characterization of as-cast nickel-based superalloy (IN-713C). Int. J. Met. (2020). https://doi.org/10.1007/s40962-020-00540-0

    Article  Google Scholar 

  22. S. Utada, Effect of a prior plastic deformation during heat treatments on the mechanical properties of Ni-based superalloys for turbine blade application, Ph.D thesis, 2020. National Higher School of Mechanics and Aerotechnics, University of Poitiers, France

  23. M.M. Barjesteh, S.M. Abbasi, K. Zangeneh-Madar, K. Shirvani, Creep rupture properties of bare and coated polycrystalline nickel-based superalloy Rene®80. J. Min. Metall. Sect. B-Metall. 57(3), 401–412 (2021). https://doi.org/10.2298/JMMB201203036B

    Article  CAS  Google Scholar 

  24. C. Parlikar, D.V.V. Satyanarayana, D. Chatterjee, N. Hazari, D.K. Das, Effect of Pt–aluminide bond coat on tensile and creep behavior of a nickel-base single crystal superalloy. Mater. Sci. Eng. A. 639, 575–584 (2015). https://doi.org/10.1016/j.msea.2015.05.051

    Article  CAS  Google Scholar 

  25. M.T. Kim, D.S. Kim, O.Y. Oh, Effect of γ’ precipitation during hot isostatic pressing on the mechanical property of a nickel-based superalloy. Mater. Sci. Eng. A. 480, 218–225 (2008). https://doi.org/10.1016/j.msea.2007.07.020

    Article  CAS  Google Scholar 

  26. Y. Du, Z. Tan, Y. Yang, X. Wang, Y. Zhou, J. Li, X. Sun, Creep properties of a nickel-based single crystal superalloy with low density. Met. Mater. Int. 4, 1–6 (2021). https://doi.org/10.1007/s12540-020-00903-6

    Article  CAS  Google Scholar 

  27. L. Wang, Y. Liu, J. Liang, Effect of rejuvenation heat treatment on the creep property and microstructural evolution of a Ni-base superalloy. Appl. Sci. 10, 1187–1200 (2020). https://doi.org/10.3390/app10031187

    Article  CAS  Google Scholar 

  28. Y. Zhou, S. Rao, Z. Zhang, Z. Zhao, Interaction of hot isostatic pressing temperature and hydrostatic pressure on the healing of creep cavities in a nickel-based superalloy. Mater. Design. 49, 25–27 (2013). https://doi.org/10.1016/j.matdes.2013.01.055

    Article  CAS  Google Scholar 

  29. A. Baldan, Rejuvenation procedures to recover creep properties of nickel-base superalloys by heat treatment and hot isostatic pressing techniques. J. Mater. Sci. 26, 3409–3421 (1991). https://doi.org/10.1007/BF00557126

    Article  CAS  Google Scholar 

  30. O.M. Horst, B. Ruttert, D. Burger, L. Heep, H. Wang, A. Dlouhy, W. Theisen, G. Eggeler, On the rejuvenation of crept Ni-Base single crystal superalloys (SX) by hot isostatic pressing (HIP). Mater. Sci. Eng. A. 758, 202–214 (2019). https://doi.org/10.1016/j.msea.2019.04.078

    Article  CAS  Google Scholar 

  31. M.R.G. Prasad, S. Gao, N. Vajragupta, A. Hartmaier, Influence of trapped gas on pore healing under hot isostatic pressing in nickel-base superalloys. Curr. Comput.-Aided Drug Des. 10, 1147–1162 (2020). https://doi.org/10.3390/cryst10121147

    Article  CAS  Google Scholar 

  32. X.G. Zheng, Y.-N. Shi, L.H. Lou, Healing process of casting pores in a Ni-based superalloy by hot isostatic pressing. J. Mater. Sci. Technol. 31(11), 1151–1157 (2015). https://doi.org/10.1016/j.jmst.2015.07.004

    Article  CAS  Google Scholar 

  33. X. Wang, Y. Zhou, J. Dong, T. Wang, Z. Zhao, Z. Zhang, Microstructural changes of a creep damaged nickel-based K002 superalloy containing Hf element under different HIP temperatures. High Temp. Mater. Proc. 35(2), 153–159 (2016). https://doi.org/10.1515/htmp-2014-0128

    Article  CAS  Google Scholar 

  34. T. Pollock, S. Tin, J. Propul, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. Power 22, 361–374 (2006). https://doi.org/10.2514/1.18239

    Article  CAS  Google Scholar 

  35. W. Xuan, X. Zhang, Y. Zhao, J. Li, B. Wang, X. Ren, Z. Ren, Mechanism of improved intermediate temperature plasticity of nickel-base single crystal superalloy with hot isostatic pressing. J. Mater. Res. Technol. 14, 1609–1617 (2021). https://doi.org/10.1016/j.jmrt.2021.07.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Barjesteh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barjesteh, M.M. Rejuvenation of Nickel-Based Superalloy Experiencing Creep via Use of Hot Isostatic Pressing and Heat Treatment. Inter Metalcast 16, 1960–1975 (2022). https://doi.org/10.1007/s40962-021-00739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00739-9

Keywords

Navigation