Skip to main content
Log in

Simulation Based Optimization of Geometrical Factors and Process Parameters for a Continuous Caster to Fabricate Aluminum Based MMC

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Processing of Al-MMC incorporates liquid state processing, specifically, stir casting owing to its simplicity, flexibility and ease of processing. Achieving uniform distribution of reinforcement particles and making the casting process continuous is a tall challenge for the researchers. In the present investigation, a simulation based optimization of various parameters for newly developed continuous casting setup was carried out. Computational simulations were accomplished by Ansys-CFD software. Simulation of various aspects like design, flow behavior, temperature profile, etc., has been studied for optimization of casting process. After analyzing flow pattern of liquid in different conditions, optimized geometry and casting parameters have been proposed. The proposed designed and casting parameters were experimentally validated to synthesize Al-MMC. The experimental result showed that the optimized simulation results can produce sound MMCs with minimum cast defect. Hence, this economical continuous casting process can cast high quality Al MMCs in industrial scale.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Abbreviations

D RSD :

Diameter of Rotor Shear Device

D M :

Diameter of the mixing station

D I :

Diameter of the impeller

D S :

Diameter of the stator

H s :

Suction Height

N :

Impeller Speed (rpm)

N p :

Power Number

P :

Power Consumption

R e :

Reynolds Number

ρ :

Density

References

  1. L. Zhu, N. Li, P.R.N. Childs, Propuls. Power Res. 7, 103 (2018)

    Article  Google Scholar 

  2. P. Ajay Kumar, P. Rohatgi, D. Weiss, Int. J. Met. 14, 291 (2020). https://doi.org/10.1007/s40962-019-00375-4

  3. M. Singla, D. Deepak Dwivedi, L. Singh, and V. Chawla, J. Miner. Mater. Charact. Eng. 8, 455 (2009).

  4. A. Loukus, J. Loukus, Int. J. Met. 5, 57 (2011). https://doi.org/10.1007/BF03355508

    CAS  Google Scholar 

  5. P. Senthil Kumar, V. Kavimani, K. Soorya Prakash, V. Murali Krishna, G. Shanthos Kumar, Int. J. Met. 14, 84 (2020). https://doi.org/10.1007/s40962-019-00330-3

  6. L. H. Zhong, Y. T. Zhao, S. L. Zhang, G. Chen, S. Chen, and Y. H. Liu, Trans. Nonferrous Met. Soc. China (English Ed). 23, 2502 (2013).

  7. U. Aybarç, O. Ertuğrul, M.Ö. Seydibeyoğlu, Int. J. Met. 15, 638 (2021). https://doi.org/10.1007/s40962-020-00490-7

    Google Scholar 

  8. R. Gecu, A. Karaaslan, Int. J. Met. 13, 641 (2019)

    CAS  Google Scholar 

  9. A. McLean, H. Soda, Q. Xia, A.K. Pramanick, A. Ohno, G. Motoyasu, T. Shimizu, S.A. Gedeon, T. North, Compos. Part A Appl. Sci. Manuf. 28, 153 (1997)

    Article  Google Scholar 

  10. M. Zolfaghari, M. Azadi, M. Azadi, Int. J. Met. 15, 152 (2021). https://doi.org/10.1007/s40962-020-00437-y

    CAS  Google Scholar 

  11. V.S. Ayar, M.P. Sutaria, Int. J. Met. 14, 59 (2020). https://doi.org/10.1007/s40962-019-00328-x

    CAS  Google Scholar 

  12. M. Yousefi, H. Doostmohammadi, Int. J. Met. 15, 650 (2021). https://doi.org/10.1007/s40962-020-00499-y

    CAS  Google Scholar 

  13. H. Nakae, Y. Hiramoto, Int. J. Met. 5, 23 (2011). https://doi.org/10.1007/BF03355469

    CAS  Google Scholar 

  14. F. He, E. Forthofer, Int. J. Met 5, 71 (2011). https://doi.org/10.1007/BF03355512

    Google Scholar 

  15. J.C. Walker, W.M. Rainforth, H. Jones, Wear 259, 577 (2005)

    Article  CAS  Google Scholar 

  16. C.P. Ling, M.B. Bush, D.S. Perera, J. Mater. Process. Technol. 48, 325 (1995)

    Article  Google Scholar 

  17. J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process. Technol. 92–93, 1 (1999)

    Article  Google Scholar 

  18. M. Xia, A.K.P. Rao, Z. Fan, Mater. Sci. Forum 765, 291–295 (2013)

    Article  Google Scholar 

  19. G.A. Gegel, D.J. Weiss, Int. J. Met. 1, 57 (2007). https://doi.org/10.1007/BF03355418

    CAS  Google Scholar 

  20. J. Hashim, J. Teknol. 35, 9 (2001)

    Google Scholar 

  21. R.G. Chougule, B. Ravi, Int. J. Comput. Integr. Manuf. 19, 676 (2006)

    Article  Google Scholar 

  22. P. Biswas, A. Kundu, H. R. Kotadia, A. Mallik, and S. Das, CIRP J. Manuf. Sci. Technol. (2020).

  23. D.-Y. Lee, S.-W. Kang, D.-H. Cho, and K.-B. Kim, Rare Metals, 25,118 (2006).

  24. M.P. Kenney, K.P. Chesterfield, B. Young, A.A. Koch, Overland, US patent- 4,473,103, (1984).

  25. B.P. Krishnan, M.K. Surappa, P.K. Rohatgi, J. Mater. Sci. 16, 1209 (1981)

    Article  CAS  Google Scholar 

  26. S. Hai, W. Gao, H. Zhang, H. Liu, J. Manuf. Sci. Eng. 132, 1 (2013)

    Google Scholar 

  27. M.K. Sahu, R.K. Sahu, Trans. Indian Inst. Met. 70, 2563 (2017)

    Article  CAS  Google Scholar 

  28. T. T. Tran, T. T. Vo, S. C. Cho, D. H. Lee, and W. R. Hwang, J. Mater. Proc. Technol. (Elsevier B.V., 2018).

  29. J. Li and R. A. Laghari, Int. J. Adv. Manufac. Technol., 2929 (2019).

  30. M.V.S.P. Kumar, M.V.S. Babu, V. Ramana, Int. J. Eng. Res. App. 5, 132 (2015)

    Google Scholar 

  31. S. Naher, D. Brabazon, L. Looney, J. Mat. Process. Technol. 144, 567 (2003)

    Article  Google Scholar 

  32. J. Hashim, L. Looney, M.S.J. Hashmi, J. Mat. Process. Techol. 123, 258 (2002)

    Article  CAS  Google Scholar 

  33. Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, AIChE J. 59, 215 (2012)

    Article  Google Scholar 

  34. P.K. Bannaravuri, A.K. Birru, Results Phys. 10, 360 (2018)

    Article  Google Scholar 

  35. D.P. Myriounis, S.T. Hasan, T.E. Matikas, Compos. Interfaces 15, 495 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Royal Academy of Engineering (UK & India, Industry-Academia Partnership Programme – 17-18, IAPP1R2/100109) for extending financial support toward procurement of consumables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Das.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, P., Mishra, S., Sahu, M. et al. Simulation Based Optimization of Geometrical Factors and Process Parameters for a Continuous Caster to Fabricate Aluminum Based MMC. Inter Metalcast 16, 1758–1776 (2022). https://doi.org/10.1007/s40962-021-00705-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00705-5

Keywords

Navigation