Sand casting of surface alloyed butterfly valve with improved hardness and corrosion resistance by incorporating metal powders in-mold coatings


A cost-effective procedure to surface alloy WCB steel butterfly valve sand castings using mold coatings incorporating metal and ferroalloy powders has been described. The tooling, mold design, and casting conditions similar to plain WCB castings were successfully used to produce sound surface alloyed butterfly castings under industrial conditions. The surface alloying was achieved by adding powders of Ni, Cr, Fe–Si, Fe–Mn, and Mo to the slurry containing a binder coated on the mold surface. The surface alloyed coatings on the surface of WCB steel butterfly valve castings were enriched in Ni, Cr, Mo, and Mn up to 6.4, 23.2, 3.3, and 1.1%, respectively. The depths of coatings were as high as 420 µm. After normalizing and tempering heat treatment, the surface alloyed layer exhibited an increase in corrosion resistance as compared to base metal WCB steel.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11


  1. 1.

    J. R. Davis, Alloying Understanding the Basics. (ASM International, Geauga County, 2001).

  2. 2.

    X. Jiang, A. Jiahe, X. Xie, Z. Xu, Multi-element Ni–Cr–Mo–Cu surface alloyed layer on steel using a double glow plasma process. Surf. Coat. Technol. 168(2), 142–147 (May 2003).

    CAS  Article  Google Scholar 

  3. 3.

    S. Anandan, S. Pityana, and J. Dutta Majumdar, Structure–property-correlation in laser surface alloyed AISI 304 stainless steel with WC+Ni+NiCr. Mater. Sci. Eng. A, 536, 159–169. Doi:

  4. 4.

    M. Krishnakumar, R. Saravanan, Surface alloying on austenitic stainless steel with titanium and tungsten using gas tungsten arc. Eng. Res. Express 1(2), 025005 (Oct. 2019).

    Article  Google Scholar 

  5. 5.

    H.C. Fals, A.S. Roca, J.B. Fogagnolo, L. Fanton, M.J.X. Belém, C.R.C. Lima, Erosion–corrosion resistance of laser surface alloying of NbC thermal spray coatings on AISI 304L steel. J. Therm. Spray Tech. 29(1), 319–329 (Jan. 2020).

    CAS  Article  Google Scholar 

  6. 6.

    N. Jeyaprakash, C.-H. Yang, S. Sivasankaran, Laser cladding process of cobalt and nickel based hard-micron-layers on 316L-stainless-steel-substrate. Mater. Manuf. Process. 35(2), 142–151 (Jan. 2020).

    CAS  Article  Google Scholar 

  7. 7.

    A. Amirsadeghi, M.H. Sohi, Comparison of the influence of molybdenum and chromium TIG surface alloying on the microstructure, hardness and wear resistance of ADI. J. Mater. Process. Technol. 201(1–3), 673–677 (2008)

    CAS  Article  Google Scholar 

  8. 8.

    L. Jinlong, L. Tongxiang, W. Chen, Surface enriched molybdenum enhancing the corrosion resistance of 316L stainless steel. Mater. Lett. 171, 38–41 (2016)

    Article  Google Scholar 

  9. 9.

    B.N. Mordyuk, G.I. Prokopenko, PYu. Volosevich, L.E. Matokhnyuk, A.V. Byalonovich, T.V. Popova, Improved fatigue behavior of low-carbon steel 20GL by applying ultrasonic impact treatment combined with the electric discharge surface alloying. Mater. Sci. Eng. A 659, 119–129 (Apr. 2016).

    CAS  Article  Google Scholar 

  10. 10.

    L. Song, G. Zeng, H. Xiao, X. Xiao, S. Li, Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders. J. Manuf. Process. 24, 116–124 (Oct. 2016).

    Article  Google Scholar 

  11. 11.

    H.T. Cao, X.P. Dong, Z. Pan, X.W. Wu, Q.W. Huang, Y.T. Pei, Surface alloying of high-vanadium high-speed steel on ductile iron using plasma transferred arc technique: Microstructure and wear properties. Mater. Des. 100, 223–234 (Jun. 2016).

    CAS  Article  Google Scholar 

  12. 12.

    D. F. Macdonald, Process of coating metal castings US3450189A. Jun 17, 1969.

  13. 13.

    S. C. de Rezende, I. Dainezi, R. C. Apolinario, L. L. de Sousa, and N. A. Mariano, “Influence of Molybdenum on microstructure and pitting corrosion behavior of solution-treated duplex stainless steel in a lithium chloride solution. Mater. Res. 22, 2019.

  14. 14.

    T. Ohmi, Y. Nakagawa, M. Nakamura, A. Ohki, T. Koyama, Formation of chromium oxide on 316L austenitic stainless steel. J. Vac. Sci. Technol. A 14(4), 2505–2510 (Jul. 1996).

    CAS  Article  Google Scholar 

  15. 15.

    H.J.T. Ellingham, Reducibility of oxides and sulphides in metallurgical processes. J. Soc. Chem. Ind. 63(5), 125–133 (1944)

    CAS  Article  Google Scholar 

  16. 16.

    F.D. Richardson, J.H.E. Jeffes, Free energies of formation of metal oxides as a function of temperature. J. Iron Steel Inst. 160, 261–273 (1948)

    CAS  Google Scholar 

  17. 17.

    M. Hasegawa, Ellingham diagram in Treatise on Process Metallurgy (Elsevier, London, 2014). pp. 507–516.

  18. 18.

    N. Ohkubo, K. Miyakusu, Y. Uematsu, H. Kimura, Effect of alloying elements on the mechanical properties of the stable austenitic stainless steel. ISIJ Int. 34(9), 764–772 (1994)

    CAS  Article  Google Scholar 

  19. 19.

    C.X. Shan, X. Hou, K.-L. Choy, Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surf. Coat. Technol. 202(11), 2399–2402 (Feb. 2008).

    CAS  Article  Google Scholar 

  20. 20.

    N.C. Hosking, M.A. Ström, P.H. Shipway, C.D. Rudd, Corrosion resistance of zinc–magnesium coated steel. Corros. Sci. 49(9), 3669–3695 (Sep. 2007).

    CAS  Article  Google Scholar 

  21. 21.

    P. Jayaweera, D.M. Lowe, A. Sanjurjo, K.H. Lau, L. Jiang, Corrosion-resistant metallic coatings on low carbon steel. Surf. Coat. Technol. 86–87, 522–525 (Dec. 1996).

    Article  Google Scholar 

  22. 22.

    M. Dutta, A.K. Halder, S.B. Singh, Morphology and properties of hot dip Zn–Mg and Zn–Mg–Al alloy coatings on steel sheet. Surf. Coat. Technol. 205(7), 2578–2584 (Dec. 2010).

    CAS  Article  Google Scholar 

  23. 23.

    A. Wiengmoon, J.T.H. Pearce, T. Chairuangsri, Relationship between microstructure, hardness and corrosion resistance in 20wt.%Cr, 27wt.%Cr and 36wt.%Cr high chromium cast irons. Mater. Chem. Phys. 125(3), 739–748 (Feb. 2011).

    CAS  Article  Google Scholar 

  24. 24.

    R. W. Revie, Corrosion and corrosion control: an introduction to corrosion science and engineering. (John Wiley & Sons, London, 2008).

  25. 25.

    S. K. Behera, A. Kumar P, N. Dogra, M. Nosonovsky, and P. Rohatgi, Effect of Microstructure on Contact Angle and Corrosion of Ductile Iron: Iron–Graphite Composite. Langmuir, 35(49), 16120–16129, Dec. 2019. doi:

Download references


The authors thank NSF WEP IUCRC for funding the project under the grant number 1540032. The authors express their gratitude to their industrial partner, Badger Alloys Inc., for casting prototypes of surface alloyed butterfly valves.

Author information



Corresponding author

Correspondence to Amir Kordijazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rane, K., Beining, M., Behera, S. et al. Sand casting of surface alloyed butterfly valve with improved hardness and corrosion resistance by incorporating metal powders in-mold coatings. Inter Metalcast (2021).

Download citation


  • surface alloying
  • corrosion
  • austenite phase
  • heat treatment
  • butterfly valve
  • nickel
  • chromium
  • manganese
  • silicon
  • molybdenum