Skip to main content
Log in

High-Porosity Closed-Cell Aluminum Foams Produced by Melting Method Without Stabilizer Particles

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript


Closed-cell A356 aluminum foams have been produced by the addition of calcium carbonate (CaCO3) powder as a foaming agent to the molten aluminum without any stabilizer particles. The foaming process is performed by the addition of 2.5–3.5 wt% CaCO3 and has relative density ranges of 0.12–0.44 and cell sizes of 1.5–3.1 mm with uniform cell structures. The foaming stabilizing mechanism and effect of foaming conditions such as the amount of foaming agent, casting holding and mixing time at the furnace on the foamed samples were investigated. The stabilizing mechanism is because of the foaming gas (CO2)/melt reaction during the foaming procedure and producing some solid particles such as CaO, Al2O3 and MgO. The optimum foamed aluminum with uniform cell size distribution was obtained at 4-min mixing time and 10-min holding time with 3 wt% CaCO3 foaming agent. The porosity of aluminum foam increased as the holding time increased from 60 to 86%. Also, the average cell size increased from 1.5 to 3.1 mm when the amount of CaCO3 increased from 2.5 wt% to 3.5 wt%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others


  1. H.P. Degischer, B. Kriszt, Handbook of cellular metals: Production, Processing, Applications (Wiley-VCH Verlag GmbH & Co, Germany, 2002)

    Book  Google Scholar 

  2. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams-A Design Guide (Butterworth-Heinemann, London, 2000)

    Google Scholar 

  3. F. Binesh, J. Zamani, M. Ghiasvand, Ordered structure composite metal foams produced by casting. Int. J. Metalcast. 12, 89–96 (2018)

    Article  Google Scholar 

  4. C.C. Yang, H. Nakae, The effects of viscosity and cooling conditions on the foamability of aluminum alloy. J. Mater. Process. Technol. 141, 202–205 (2003)

    Article  CAS  Google Scholar 

  5. Z.L. Song, J.S. Zhu, L.Q. Ma, D.P. He, Evolution of foamed aluminum structure in foaming process. Mater. Sci. Eng. A 298(1–2), 137–143 (2001)

    Article  Google Scholar 

  6. S. Sasikumar, K. Georgy, M. Mukherjee, G.S. Vinod Kumar, Foam stabilization by aluminum powder. Mater. Lett. (2019).

    Article  Google Scholar 

  7. V. Gergely, D.C. Curran, T.W. Clyne, The FOAMCARP process: foaming of aluminium MMCs by the chalk-aluminium reaction in precursors. Compos. Sci. Technol. 63, 2301–2305 (2003)

    Article  CAS  Google Scholar 

  8. M. Haesche, D. Lehmhus, J. Weise, M. Wichmann, I. Cristina, Carbonates as foaming agent in chip-based aluminium foam precursor. J. Mater. Sci. Technol. 26(9), 845–850 (2010)

    Article  CAS  Google Scholar 

  9. T. Nakamura, S. Gnyloskurenko, K. Sakamoto, A. Byakova, R. Ishikawa, Development of new foaming agent for metal foam. Mater. Trans. 43, 1191–1194 (2002)

    Article  CAS  Google Scholar 

  10. A. Byakova, I. Kartuzov, T. Nakamura, S. Gnyloskurenko, The role of foaming agent and processing route in mechanical performance of fabricated aluminum foams. Proc. Mater. Sci. 4, 109–114 (2014)

    Article  CAS  Google Scholar 

  11. V. Gergely, D.C. Curran, T.W. Clyne, A. Ghosh, T. Sanders, D. Claar Processing and Properties of Lightweight Cellular Metals and Structures, TMS, Warrendale, pp. 97–101 (2002)

  12. A. Byakova, Y. Bezim’yanny, S. Gnyloskurenko, T. Nakamura, Fabrication method for closed-cell aluminium foam with improved sound absorption ability. Proc. Mater. Sci. 4, 9–14 (2014)

    Article  Google Scholar 

  13. S.F. Fischer, P. Schuler, C. Fleck, A. Buhrig-Polaczek, Influence of the casting and mould temperatures on the (micro)structure and compression behaviour of investment-cast open-pore aluminium foams. Acta Mater. 61, 5152–5161 (2013)

    Article  CAS  Google Scholar 

  14. G. Avinash, V. Harika, Ch Sandeepika, R. Kumar, N. Gupta, Porosity control in aluminium foams using different additives. Mater. Today Proc. 18, 1054–1057 (2019)

    Article  CAS  Google Scholar 

  15. J. Banhart, Light-metal foams—history of innovation and technological challenges. Adv. Eng. Mater. 3, 15 (2013).

    Article  CAS  Google Scholar 

  16. D.P. Papadopoulos, H. Omar, F. Stergioudi, S.A. Tsipas, H. Lefakis, N. Michailidis, A novel method for producing Al-foams and evaluation of their compression behavior. J Porous Mater 17, 773–777 (2010).

    Article  CAS  Google Scholar 

  17. J. Lázaro, E. Solórzano, M.A. Rodríguez-Pérez, Alternative carbonates to produce aluminium foams via melt route. Proc. Mater. Sci. 4, 275–280 (2014)

    Article  Google Scholar 

  18. M. Malekjafarian, S.K. Sadrnezhaad, Closed-cell Al alloy composite foams: production and characterization. Mater. Des. 42, 8–12 (2012)

    Article  CAS  Google Scholar 

  19. M. Heidari Ghaleh, N. Ehsani, H.R. Baharvandi, Compressive properties of A356 closed-cell aluminum foamed with a CaCO3 foaming agent without stabilizer particles. Metals Mater. Int. 2(1), 1–7 (2020).

    Article  CAS  Google Scholar 

  20. J. Kahani, S. Bazzaz, F. Moghaddasi, A. Kahani, A study of fabricating and compressive properties of cellular Al–Si (355.0) foam using TiH2. Mater. Des. 55, 792–797 (2014)

    Article  Google Scholar 

  21. I. Barin, O. Knake, O. Kubaschewski, Thermodynamic Properties of Inorganic Substances (Springer, Berlin, 1977)

    Book  Google Scholar 

  22. D.R. Gaskell, Introduction to the thermodynamics of materials (Taylor & Francis, Washington DC, 1995)

    Google Scholar 

  23. W.Y. Jang, W.Y. Hsieh, C.C. Miao, Y.C. Yen, Microstructure and mechanical properties of ALPORAS closed-cell aluminium foam. Mater. Charact. 107, 228–238 (2015)

    Article  CAS  Google Scholar 

  24. S. Sowmiya, P. Nallanukala, J. Anburaj, B. Simhachalam, Development of metallic aluminium foam casting using calcium carbonate precursors for side impact beam application. Mater. Today Proc. 5, 20362–20370 (2018)

    Article  CAS  Google Scholar 

  25. W. Deqing, Sh Ziyuan, Effect of ceramic particles on cell size and wall thickness of aluminum foam. Mater. Sci. Eng. A 361, 45 (2003)

    Article  Google Scholar 

  26. C.C. Yang, H. Nakae, Foaming characteristics control during production of aluminum alloy foam. J. Alloy. Compd. 313(1–2), 188–191 (2000)

    Article  CAS  Google Scholar 

  27. W. Deqing, X. Weiwei, S. Ziyuan, Cell size prediction of a closed aluminum foam. Mater. Sci. Eng. A 431(1–2), 298–305 (2006)

    Google Scholar 

  28. W. Deqing, M. Xiangjun, X. Weiwei, S. Ziyuan, Effect of processing parameters on cell structure of an aluminum foam. Mater. Sci. Eng. A 420(1–2), 235–239 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Heidari Ghaleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaleh, M.H., Ehsani, N. & Baharvandi, H.R. High-Porosity Closed-Cell Aluminum Foams Produced by Melting Method Without Stabilizer Particles. Inter Metalcast 15, 899–905 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: