Skip to main content
Log in

Artificial Neural Network Modeling of Grain Refinement Performance in AlSi10Mg Alloy

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Optimization of casting parameters is essential in terms of quality factors in foundries. Nowadays, to optimize process parameters, new approaches such as artificial neural networks method are being used. In this study, a neural network model has been developed to control the grain size in aluminum casting alloys. Some of the important grain refinement parameters such as casting temperature, holding time and addition level have been evaluated as inputs for the model. The network training architecture was optimized at 241 training cycles with quasi-Newton algorithm with a single hidden layer and 6 neurons. With modeling, mean absolute percent error was found at 0.99 between experimental measurements and model estimation. R2 value has been calculated as 99.2%. The minimum grain size was measured for the parameter of 680 °C casting temperature, 0.25% Ti, 25-min holding time. It was found that there was a good agreement between experimental measurements and artificial neural network predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Y.H. Zhang, C.Y. Ye, Y.P. Shen, W. Chang, D.H. StJohn, G. Wang, Q.J. Zhai, Grain refinement of hypoeutectic Al–7wt.%Si alloy induced by an Al–V–B master alloy. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152022

    Article  Google Scholar 

  2. G.K. Sigworth, The modification of Al–Si casting alloys: important practical and theoretical aspects. Int. J. Met. 2, 41 (2008). https://doi.org/10.1007/bf03355442

    Article  Google Scholar 

  3. Y. Birol, Effect of silicon content in grain refining hypoeutectic Al–Si foundry alloys with boron and titanium additions. Mater. Sci. Technol. 28, 385–389 (2012). https://doi.org/10.1179/1743284711Y.0000000049

    Article  CAS  Google Scholar 

  4. M. Riestra, E. Ghassemali, T. Bogdanoff, S. Seifeddine, Interactive effects of grain refinement, eutectic modification and solidification rate on tensile properties of Al–10Si alloy. Mater. Sci. Eng. A. (2017). https://doi.org/10.1016/j.msea.2017.07.074

    Article  Google Scholar 

  5. N. Hari Babu, Engineering the heterogeneous nuclei in Al–Si alloys for solidification control. Appl. Mater. Today 5, 255–259 (2016). https://doi.org/10.1016/j.apmt.2016.11.001

    Article  Google Scholar 

  6. A.P. Boeira, I.L. Ferreira, A. Garcia, Modeling of macrosegregation and microporosity formation during transient directional solidification of aluminum alloys. Mater. Sci. Eng. A 435–436, 150–157 (2006). https://doi.org/10.1016/j.msea.2006.06.003

    Article  CAS  Google Scholar 

  7. S. Farahany, A. Ourdjini, M.H. Idris, S.G. Shabestari, Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy. J. Therm. Anal. Calorim. 114, 705–717 (2013)

    Article  CAS  Google Scholar 

  8. R. Kayikci, M. Colak, S. Sirin, E. Kocaman, N. Akar, Determination of the critical fraction of solid during the solidification of a PM-cast aluminium alloy. Mater. Tehnol. 49, 797–800 (2015). https://doi.org/10.17222/mit.2014.266

    Article  CAS  Google Scholar 

  9. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Met. 1, 31–40 (2007). https://doi.org/10.1007/BF03355416

    Article  CAS  Google Scholar 

  10. L. Bolzoni, N. Hari Babu, Towards industrial Al–Nb–B master alloys for grain refining Al–Si alloys. J. Mater. Res. Technol. (2019). https://doi.org/10.1016/j.jmrt.2019.09.031

    Article  Google Scholar 

  11. M. Uludağ, R. Çetin, D. Dispinar, M. Tiryakioğlu, The effects of degassing, grain refinement & Sr-addition on melt quality-hot tear sensitivity relationships in cast A380 aluminum alloy. Eng. Fail. Anal. (2018). https://doi.org/10.1016/j.engfailanal.2018.03.025

    Article  Google Scholar 

  12. Ö. Kesen, A. Filiz, S. Temel, Ö. Gürsoy, E. Erzi, D. Dispinar, Relation Between Microstructure and Tensile Properties of V and B Added Al-7Si Alloy, in: Miner. Met. Mater. Ser. (2019), pp. 311–320. https://doi.org/10.1007/978-3-030-06034-3_30

  13. Ö. Gürsoy, E. Erzi, D. Dispinar, Ti Grain Refinement Myth and Cleanliness of A356 Melt, in: Miner. Met. Mater. Ser. (2019), pp. 125–130. https://doi.org/10.1007/978-3-030-06034-3_12

  14. Ö. Gürsoy, E. Erzi, Ç. Yüksel, D. Dispinar, Effect of duration on Ti grain refinement of A356 and melt quality, Shape Cast. 6th Int. Symp. (2016), pp. 203–208. https://doi.org/10.1007/978-3-319-48166-1

  15. G.K. Sigworth, Fundamentals of solidification in aluminum castings. Int. J. Met. 8, 7–20 (2014)

    Google Scholar 

  16. G. Sigworth, Understanding quality in aluminum castings. Int. J. Met. 5, 7–22 (2011). https://doi.org/10.1007/BF03355504

    Article  CAS  Google Scholar 

  17. Y. Birol, Grain refining aluminium foundry alloys with commercial Al–B master alloys. Mater. Sci. Technol. 30, 277–282 (2014). https://doi.org/10.1179/1743284713Y.0000000350

    Article  CAS  Google Scholar 

  18. X. Wang, Q. Han, Grain refinement mechanism of aluminum by Al–Ti–B master alloys, in Light Metals, ed. by E. Williams (Springer, Cham, 2016), pp. 189–193. https://doi.org/10.1007/978-3-319-48251-4_32

    Chapter  Google Scholar 

  19. D. Dispinar, A. Nordmark, J. Voje, L. Arnberg, Influence of hydrogen content and bifilm index on feeding behaviour of Al–7Si, in: Shape Casting. 3rd International Symposium (2009)

  20. P. Li, S. Liu, L. Zhang, X. Liu, Grain refinement of A356 alloy by Al–Ti–B–C master alloy and its effect on mechanical properties. Mater. Des. 47, 522–528 (2013). https://doi.org/10.1016/j.matdes.2012.12.033

    Article  CAS  Google Scholar 

  21. M. Nowak, L. Bolzoni, N.H. Babu, Grain refinement of Al–Si alloys by Nb–B inoculation. Part I : Concept development and effect on binary alloys. Mater. Des. 66, 366–375 (2015). https://doi.org/10.1016/j.matdes.2014.08.066

    Article  CAS  Google Scholar 

  22. M.A. Easton, M. Qian, A. Prasad, D.H. StJohn, Recent advances in grain refinement of light metals and alloys. Curr. Opin. Solid State Mater. Sci. (2016). https://doi.org/10.1016/j.cossms.2015.10.001

    Article  Google Scholar 

  23. M.F. Ibrahim, M.H. Abdelaziz, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of rare earth metals on the mechanical properties and fractography of Al–Si-Based alloys. Int. J. Met. 14, 108–124 (2020). https://doi.org/10.1007/s40962-019-00336-x

    Article  CAS  Google Scholar 

  24. D. Yao, F. Qiu, Q. Jiang, Y. Li, L. Arnberg, Effect of lanthanum on grain refinement of casting aluminum-copper alloy. Int. J. Met. 5 (2013)

  25. M.G. Mahmoud, E.M. Elgallad, M.F. Ibrahim, F.H. Samuel, Effect of rare earth metals on porosity formation in A356 alloy. Int. J. Met. 12, 251–265 (2018). https://doi.org/10.1007/s40962-017-0156-5

    Article  Google Scholar 

  26. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater. 84, 292–304 (2015). https://doi.org/10.1016/j.actamat.2014.10.055

    Article  CAS  Google Scholar 

  27. Q. Wang, Y.X. Li, X.C. Li, Grain refinement of Al–7Si alloys and the efficiency assessment by recognition of cooling curves. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 34, 1175–1182 (2003). https://doi.org/10.1007/s11661-003-0137-6

    Article  Google Scholar 

  28. A. Samuel, S. Salem, H. Doty, S. Valtierra, F. Samuel, Effect of melt temperature on the effectiveness of the grain refining in Al–Si castings. Adv. Mater. Sci. Eng. 2018, 1–11 (2018). https://doi.org/10.1155/2018/7626219

    Article  CAS  Google Scholar 

  29. R. Zhang, J. Li, Q. Li, Y. Qi, Z. Zeng, Y. Qiu, X. Chen, S.K. Kairy, S. Thomas, N. Birbilis, Analysing the degree of sensitisation in 5xxx series aluminium alloys using artificial neural networks: a tool for alloy design. Corros. Sci. 150, 268–278 (2019). https://doi.org/10.1016/j.corsci.2019.02.003

    Article  CAS  Google Scholar 

  30. H. Liao, B. Zhao, X. Suo, Q. Wang, Prediction models for macro shrinkage of aluminum alloys based on machine learning algorithms. Mater. Today Commun. (2019). https://doi.org/10.1016/j.mtcomm.2019.100715

    Article  Google Scholar 

  31. A.M. Hassan, A. Alrashdan, M.T. Hayajneh, A.T. Mayyas, Prediction of density, porosity and hardness in aluminum–copper-based composite materials using artificial neural network. J. Mater. Process. Technol. 209, 894–899 (2009). https://doi.org/10.1016/j.jmatprotec.2008.02.066

    Article  CAS  Google Scholar 

  32. G.C.M. Patel, R. Mathew, P. Krishna, M.B. Parappagoudar, Investigation of squeeze cast process parameters effects on secondary dendrite arm spacing using statistical regression and artificial neural network models. Procedia Technol. 14, 149–156 (2014). https://doi.org/10.1016/j.protcy.2014.08.020

    Article  Google Scholar 

  33. M.A. Khasawneh, N.F. Al-jamal, Modeling resilient modulus of fine-grained materials using different statistical techniques. Transp. Geotech. 21, 100263 (2019). https://doi.org/10.1016/j.trgeo.2019.100263

    Article  Google Scholar 

  34. C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, Oxford, 2005)

    Google Scholar 

  35. M. Dehnavi, H. Vafaeenezhad, M. Khakzadi, N. Nayebpashaee, A.R. Eivani, Modelling and prediction impression creep behaviour of Al–Cu cast alloy. Int. J. Cast Met. Res. 30, 70–80 (2017). https://doi.org/10.1080/13640461.2016.1242191

    Article  CAS  Google Scholar 

  36. T. Varol, S. Ozsahin, Artificial neural network analysis of the effect of matrix size and milling time on the properties of flake Al–Cu–Mg alloy particles synthesized by ball milling. Part. Sci. Technol. 37, 381–390 (2019). https://doi.org/10.1080/02726351.2017.1381658

    Article  CAS  Google Scholar 

  37. S.A. Razavi, F. Ashrafizadeh, S. Fooladi, Prediction of age hardening parameters for 17-4PH stainless steel by artificial neural network and genetic algorithm. Mater. Sci. Eng. A 675, 147–152 (2016). https://doi.org/10.1016/j.msea.2016.08.049

    Article  CAS  Google Scholar 

  38. T. Wang, Z. Chen, H. Fu, J. Xu, Y. Fu, T. Li, Grain refining potency of Al–B master alloy on pure aluminum. Scr. Mater. 64, 1121–1124 (2011). https://doi.org/10.1016/j.scriptamat.2011.03.001

    Article  CAS  Google Scholar 

  39. B. Hu, H. Li, Grain refinement of DIN226S alloy at lower titanium and boron addition levels. J. Mater. Process. Technol. 74, 56–60 (1998). https://doi.org/10.1016/S0924-0136(97)00249-5

    Article  Google Scholar 

  40. T. Wang, H. Fu, Z. Chen, J. Xu, J. Zhu, F. Cao, T. Li, A novel fading-resistant Al–3Ti–3B grain refiner for Al-Si alloys. J. Alloys Compd. 511, 45–49 (2012). https://doi.org/10.1016/j.jallcom.2011.09.009

    Article  CAS  Google Scholar 

  41. N. Akar, Z. Tanyel, K. Kocatepe, R. Kayikci, Investigation of the effect of holding time and melt stirring on the grain refinement of an A206 alloy. Mater. Technol. 50, 433–437 (2016). https://doi.org/10.17222/mit.2014.302

    Article  CAS  Google Scholar 

  42. A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, A metallographic study of grain refining of sr-modified 356 alloy. Int. J. Met. 11, 305–320 (2017). https://doi.org/10.1007/s40962-016-0075-x

    Article  Google Scholar 

  43. Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Insight into Si poisoning on grain refinement of Al–Si/Al–5Ti–B system. Acta Mater. 187, 51–65 (2020). https://doi.org/10.1016/j.actamat.2020.01.039

    Article  CAS  Google Scholar 

  44. S.A. Kori, B.S. Murty, M. Chakraborty, Influence of silicon and magnesium on grain refinement in aluminium alloys. Mater. Sci. Technol. 15, 986–992 (1999)

    Article  CAS  Google Scholar 

  45. Y. Birol, Effect of solute Si and Cu on grain size of aluminium alloys. Int. J. Cast Met. Res. 26, 22–27 (2013). https://doi.org/10.1179/1743133612Y.0000000023

    Article  CAS  Google Scholar 

  46. N.S. Reddy, A.K. Prasada Rao, J. Krishnaiah, M. Chakraborty, B.S. Murty, Design of an ideal grain-refiner alloy for Al-7Si alloy using artificial neural networks. J. Mater. Eng. Perform. 22, 696–699 (2013). https://doi.org/10.1007/s11665-012-0334-9

    Article  CAS  Google Scholar 

  47. I. Ghosh, S.K. Das, N. Chakraborty, An artificial neural network model to characterize porosity defects during solidification of A356 aluminum alloy. Neural Comput. Appl. 25, 653–662 (2014). https://doi.org/10.1007/s00521-013-1532-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Kocaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocaman, E., Şirin, S. & Dispinar, D. Artificial Neural Network Modeling of Grain Refinement Performance in AlSi10Mg Alloy. Inter Metalcast 15, 338–348 (2021). https://doi.org/10.1007/s40962-020-00472-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00472-9

Keywords

Navigation