Skip to main content

Advertisement

Log in

The Influence of AlFeNiCrCoTi High-Entropy Alloy on Microstructure, Mechanical Properties and Tribological Behaviors of Aluminum Matrix Composites

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The microstructure, mechanical properties and tribological behaviors of aluminum matrix composites with different contents of AlFeNiCrCoTi high-entropy alloy (HEA) (4.0, 5.0 and 6.0 wt%) were investigated. The as-cast specimens were analyzed by the scanning electron microscopy and electron probe micro-analysis. The results indicated that flake-like and blocky intermetallic compounds precipitated distributing in α-Al matrix in the solidification when the concentration of HEA was more than 4.0 wt% in pure aluminum. Moreover, as the content of HEA increased, the number of the intermetallic compounds increased. Meanwhile, a new phase formed and it distributed inter-dendrite of α-Al in the solidification, which morphology was rod-shaped and the diameter was less than 200 nm. The area fraction of the nano-phases increased, and the diameter decreased with increasing the addition of HEA in pure aluminum. The tensile test illustrated that the ultimate tensile strength increased firstly and then decreased with the increase of HEA content. When the addition concentration of HEA was 4.0 wt%, the ultimate tensile strength enhanced from 58 to 142 MPa. When 5.0 wt% HEA was added into pure aluminum, the ultimate tensile strength further improved from 142 to 170 MPa. In addition, the elongation decreased from 40.6 to 22.7%. However, when 6.0 wt% HEA was added into pure aluminum, the ultimate tensile strength and elongation reduced to 157 MPa and 18.2%, respectively. The tribological behaviors of aluminum matrix composites were investigated under the condition of seawater. The friction coefficient and wear rate of aluminum matrix composites significantly decreased with the increase of HEA content. Moreover, when the addition level was up to 6.0 wt%, the friction coefficient of aluminum matrix composites decreased by 71.1% from 0.83 to 0.24, and wear rate decreased by 90.8% from 2.48 × 10−9 m3 N−1 m−1 to 2.27 × 10−10 m3 N−1 m−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. X. Kai, K. Tian, C. Wang, L. Jiao, G. Chen, Y. Zhao, Effects of ultrasonic vibration on the microstructure and tensile properties of the nano ZrB2/2024Al composites synthesized by direct melt reaction. J. Alloys Compd. 668, 121–127 (2016)

    Article  CAS  Google Scholar 

  2. Y. Tang, Z. Chen, A. Borbely, G. Ji, S.Y. Zhong, D. Schryvers, V. Ji, H.W. Wang, Quantitative study of particle size distribution in an in situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy. Mater. Charact. 102, 131–136 (2015)

    Article  CAS  Google Scholar 

  3. Y. Yang, S.F. Wen, Q.S. Wei, W. Li, J. Liu, Y.S. Shi, Effect of scanline spacing on texture, phase and nano hardness of TiAl/TiB2 metal matrix composites fabricated by selective laser melting. J. Alloys Compd. 728, 803–814 (2017)

    Article  CAS  Google Scholar 

  4. F. Ali, S. Scudino, M.S. Anwar, R.N. Shahid, V.C. Srivastava, V. Uhlenwinkel, M. Stoica, G. Vaughan, J. Eckert, Al-based metal matrix composites reinforced with Al–Cu–Fe quasi crystalline particles: strengthening by interfacial reaction. J. Alloys Compd. 607, 274–279 (2014)

    Article  CAS  Google Scholar 

  5. C.X. Zhang, D.X. Yao, J.W. Yin, K.H. Zuo, Y.F. Xia, H.Q. Liang, Effects of β-Si3N4 whiskers addition on mechanical properties and tribological behaviors of Al matrix composites. Wear 430–431, 145–156 (2019)

    Article  Google Scholar 

  6. J.J. Zhang, S.C. Liu, Y.P. Lu, Y. Dong, T.J. Li, Fabrication process and bending properties of carbon fibers reinforced Al-alloy matrix composites. J. Mater. Process. Technol. 231, 366–373 (2016)

    Article  CAS  Google Scholar 

  7. S.C. Tjong, Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 9, 639–652 (2007)

    Article  CAS  Google Scholar 

  8. H.Y. Yue, S.S. Song, B. Wang, X. Gao, L. Yao, S.L. Zhang, L.H. Yao, X.Y. Lin, E.H. Guan, H.J. Zhang, E.J. Guo, Effects of whisker surface treatment on microstructures, tensile properties and aging behaviors of Al18B4O33w/6061Al composites. J. Alloys Compd. 697, 11–18 (2017)

    Article  CAS  Google Scholar 

  9. D.B. Miracle, Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)

    Article  CAS  Google Scholar 

  10. S. Chand, Carbon fibers for composites. J. Mater. Sci. 35, 1303–1313 (2000)

    Article  CAS  Google Scholar 

  11. C.R. Si, X.L. Tang, X.J. Zhang, J.B. Wang, W. Wu, Microstructure and mechanical properties of particle reinforced metal matrix composites prepared by gas–solid two-phase atomization and deposition technology. Mater. Lett. 201, 78–81 (2017)

    Article  CAS  Google Scholar 

  12. S.F. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, Y. Fu, Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion. Mater. Des. 95, 127–132 (2016)

    Article  CAS  Google Scholar 

  13. D.R. Ni, L. Geng, J. Zhang, Z.Z. Zheng, Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti–B4C system. Scr. Mater. 55, 429–432 (2006)

    Article  CAS  Google Scholar 

  14. X.L. Guo, Q. Guo, J.H. Nie, Z.Y. Liu, Z.Q. Li, G.L. Fan, D.B. Xiong, Y.S. Su, J.Z. Fan, D. Zhang, Particle size effect on the interfacial properties of SiC particle-reinforced Al–Cu–Mg composites. Mater. Sci. Eng. A 711, 643–649 (2018)

    Article  CAS  Google Scholar 

  15. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004)

    Article  CAS  Google Scholar 

  16. W.P. Chen, Z.Q. Fu, S.C. Fang, H.Q. Xiao, D.Z. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854–860 (2013)

    Article  CAS  Google Scholar 

  17. X. Chen, J.Q. Qi, Y.W. Sui, Y.Z. He, F.X. Wei, Q.K. Meng, Z. Sun, Effects of aluminum on microstructure and compressive properties of Al–Cr–Fe–Ni eutectic multi-component alloys. Mater. Sci. Eng. A 681, 25–31 (2017)

    Article  CAS  Google Scholar 

  18. B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys (Elsevier, Amsterdam, 2014)

    Google Scholar 

  19. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)

    Article  Google Scholar 

  20. Z.W. Yuan, W.B. Tian, F.G. Li, Q.Q. Fu, Y.B. Hu, X.G. Wang, Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering. J. Alloys Compd. 806, 901–908 (2019)

    Article  CAS  Google Scholar 

  21. J. Chen, P.Y. Niu, T. Wei, L. Hao, Y.Z. Liu, X.H. Wang, Y.L. Peng, Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J. Alloys Compd. 649, 630–634 (2015)

    Article  CAS  Google Scholar 

  22. Z.W. Wang, Y.B. Yuan, R.X. Zheng, K. Ameyama, C.L. Ma, Microstructures and mechanical properties extruded 2024 aluminum alloy reinforced by FeNiCrCoAl3 particles. Trans. Nonferrous Met. Soc. China 24(2014), 2366–2373 (2024)

    Google Scholar 

  23. G.M. Karthik, S. Panikar, G.D. Janaki Ram, R.S. Kottada, Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles. Mater. Sci. Eng. A 679, 193–203 (2016)

    Article  Google Scholar 

  24. M.Q. Luo, D.Z. Zhu, L.F. Qi, Q. Chen, L.J. Li, Properties of AlxCuFeNiCo (Cr) high entropy alloys particles reinforced aluminum alloy materials. South. Met. 6, 18–22 (2016)

    Google Scholar 

  25. Z. Tan, L. Wang, Y.F. Xue, P. Zhang, T.Q. Cao, X.W. Cheng, High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater. Des. 109, 219–226 (2016)

    Article  CAS  Google Scholar 

  26. Q.L. Li, S. Zhao, B.Q. Li, A novel modifier on the microstructure and mechanical properties of Al–7Si alloys. Mater. Lett. 251, 156–160 (2019)

    Article  CAS  Google Scholar 

  27. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59, 182–190 (2011)

    Article  CAS  Google Scholar 

  28. V. Soare, D. Mitrica, I. Constantin, V. Badilita, F. Stoiciu, A.-M.J. Popescu, I. Carcea, Influence of remelting on microstructure, hardness and corrosion behaviour of AlCoCrFeNiTi high entropy alloy. Mater. Mater. Sci. Technol. 31, 1194–1200 (2015)

    Article  CAS  Google Scholar 

  29. K. Abedi, M. Emamy, The effect of Fe, Mn and Sr on the microstructure and tensile properties of A356–10% SiC composite. Mater. Sci. Eng. A 527, 3733–3740 (2010)

    Article  Google Scholar 

  30. S. Taktak, M.S. Baspinar, Observation of delamination wear of lubricious tribo-film formed on Si3N4 during sliding against WC-Co in humidity air. Tribol. Int. 39, 39–49 (2006)

    Article  CAS  Google Scholar 

  31. N. Akaberi, R. Taghiabadi, A. Razaghian, Effect of bifilm oxides on the dry sliding wear behavior of Fe-rich Al–Si alloys. J. Tribol. 139, 1254–1263 (2017)

    Article  Google Scholar 

  32. A.N. Anasyida, A.R. Daud, M.J. Ghbyajali, Dry sliding wear behavior of Al–4Si–4Mg alloys by the addition of cerium. Int. J. Mech. Mater. Eng. 4, 127–130 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 51561021), the State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology (SKLAB02019007) and National Innovation Training Program of College Students (DC2019165; DC2019161).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Li or Yefeng Lan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Bao, X., Zhao, S. et al. The Influence of AlFeNiCrCoTi High-Entropy Alloy on Microstructure, Mechanical Properties and Tribological Behaviors of Aluminum Matrix Composites. Inter Metalcast 15, 281–291 (2021). https://doi.org/10.1007/s40962-020-00462-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00462-x

Keywords

Navigation