Skip to main content
Log in

Microstructure of spheroidal graphite aluminum-alloyed cast irons (SGAACI) containing up to 7.5 wt% produced via in-mold process

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the present research work, the effect of various aluminum contents on the microstructure of spheroidal graphite cast irons produced via the in-mold process was investigated. Samples containing 0, 3.7, 5.5, 6.4 and 7.5 wt% aluminum were cast and characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and hardness test. It was observed that by increasing the Al content from 0 to 7.5 wt%, the micro-hardness of pearlite and ferrite phases increases by 228 and 254 Vickers, respectively. Moreover, the addition of aluminum led to an increase in the nodule count from 168 to 668 per mm2, reduction in the nodule diameter from 21.4 to 8.8 µm and also reduction in the sphericity from 65 to 48%. The obtained results revealed that varying aluminum content affects the precipitated pearlite morphology. This seems to be the result of aluminum reaction with carbon and the change in both carbon activity and rate of diffusion and also the aluminum atom behavior in the solid solution of Fe–Al–C alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. R.P. Walson, Aluminum alloyed cast irons properties used in design. AFS Trans. 85, 51–58 (1977)

    CAS  Google Scholar 

  2. D.M. Stefanescu, F. Martinez, Compacted/vermicular graphite cast irons in the Fe–C–Al system. AFS Trans. 90, 39–46 (1982)

    CAS  Google Scholar 

  3. F. Martinez, D.M. Stefanescu, Properties of compacted/vermicular graphite cast irons in the Fe–C–Al system produced by ladle and in-mold treatment. AFS Trans. 91, 593–606 (1983)

    CAS  Google Scholar 

  4. J.R. Davis, Cast Iron. in ASM Specialty Handbook, 1st edn. (ASM Int., Materials Park, 1996)

  5. A.R. Kiani-Rashid, D.V. Edmonds, Surf. Inter. Anal. 36, 1011–1013 (2004)

    Article  Google Scholar 

  6. W.J. Keep, Trans. Am. Inst. Mining Eng. 18 (1888)

  7. C. Defrancq, J. Van Eegram, A. Desy, Cast Met. Res. J. 7, 1 (1971)

    CAS  Google Scholar 

  8. V.P. Ermakova, Met. Sci. Heat Treat. 56, 118–123 (2014)

    Article  CAS  Google Scholar 

  9. H.M. Muhmond, H. Fredriksson, Graphite growth control analysis in high Al cast iron. Int. J. Cast Met. Res. 29(5), 272–278 (2016)

    Article  Google Scholar 

  10. D.M. Stefanescu, G. Alonso, P. Larrañaga et al., Inter Metalcast 12, 722–752 (2018)

    Article  CAS  Google Scholar 

  11. D M. Stefanescu, F. Martinez, Compacted graphite cast irons in the iron–carbon aluminum system, U. S. Patent no. 4,501,612 (1985)

  12. S.M.A. Boutorabi, The Austempering Kinetics, Microstructure and Mechanical Properties of Spherical Graphite Unalloyed Aluminum Cast Iron. Ph.D. thesis, University Birmingham (1991)

  13. E.V. Petitbon, J.F. Wallace, AFS Cast Met. Res. J. 9, 127–134 (1973)

    CAS  Google Scholar 

  14. A.A. Zhukov, Met. Sci. 12, 521–524 (1978)

    Article  CAS  Google Scholar 

  15. M. Ghoreshy, V. Kondic, Met. Soc. 562–568 (1980)

  16. M. Divandari, Investigation on Production Method and Properties of High Aluminum Cast Iron (20–25 wt%). M.Sc. thesis, Iran University of Science and Technology (1989)

  17. A. Shayesteh-Zeraati, H. Naser-Zoshki, A.R. Kiani-Rashid, J. Alloy Compd. 500, 129–133 (2010)

    Article  CAS  Google Scholar 

  18. M.M. Haque, J. Mater. Process. Technol. 191, 360–363 (2007)

    Article  CAS  Google Scholar 

  19. M.S. Soiński, P. Kordas, K. Skurka, A. Jakubus, Arch. Found. Eng. 16, 141–146 (2016)

    Article  Google Scholar 

  20. M.S. Soiński, P. Susek, Arch. Found. Eng. 8, 123–128 (2008)

    Google Scholar 

  21. M.S. Soiński, Arch. Found. Eng. 12, 117–122 (2012)

    Article  Google Scholar 

  22. M.S. Soiński, A. Jakubus, P. Kordas, K. Skurka, Arch. Found. Eng. 14, 95–100 (2014)

    Article  Google Scholar 

  23. S. Kashani, S.M.A. Boutorabi, J. Iron Steel Res. Int. 16, 23–28 (2009)

    Article  CAS  Google Scholar 

  24. N. Haghdadi, B. Bazaz, A.R. Kiani-Rashid, Int. J. Min. Metall. Mater. 19, 812–820 (2012)

    Article  CAS  Google Scholar 

  25. E. Aguado, M. Ferrer, P. Larrañaga, D.M. Stefanescu et al., Inter Metalcast 13, 536–545 (2019)

    Article  CAS  Google Scholar 

  26. N. Aleksandrov, L. Ilicheva, Met. Sci. Heat Treat. 5, 646–650 (1963)

    Article  Google Scholar 

  27. B.K. Sharam, Indian Found. J. 9–13 (1984)

  28. Y. Kharazi, M. Divandari, Int. Eng. J. Iran Univ. Sci. Technol. 1, 23–39 (1990) (in Persian)

  29. W. Thiele, Alum. 38, 707–715 (1962)

    CAS  Google Scholar 

  30. M. Divandari, J. Campbell, Alum. Trans. 2, 233–238 (2000)

    CAS  Google Scholar 

  31. M. Divandari, J. Campbell, Int. J. Cast Met. Res. 17, 182–187 (2004)

    Article  CAS  Google Scholar 

  32. M. Divandari, J. Campbell, Int. J. Cast Met. Res. 18, 187–192 (2005)

    Article  CAS  Google Scholar 

  33. C.M. Dunks, G. Hobman, G. Mannion, Mold nodulizing and continuous stream treatment techniques as operated in Europe. AFS Trans. 82, 391–406 (1974)

    CAS  Google Scholar 

  34. S. Weese, P. Mohla, In-the-mold process innovations: a case history. AFS Trans. 103, 15–19 (1995)

    CAS  Google Scholar 

  35. M. Remondino, F. Pilastro, E. Natale et al., Inoculation and spheroidizing treatment directly inside the mold. AFS Trans. 82, 239–252 (1974)

    CAS  Google Scholar 

  36. The British Standards, BS ISO 945, Microstructure of cast irons, International Organization for Standardization (BSI Standards Publication, 2019)

  37. SinterCast, Nodularity Rating Chart, SinterCast (1997)

  38. M. Castro, M. Herrera-Trejo, J. Alvarado-Reyna et al., Int. J. Cast Met. Res. 16, 83–86 (2003)

    Article  CAS  Google Scholar 

  39. R. Elliott, Cast Iron Technology (Butterworth-Heinemann, 1988)

  40. J. Brown, Foseco Ferrous Foundryman’s Handbook, 1st edn. (Foseco International Ltd, 2000)

  41. A. Shayesteh-Zeraati, H. Naser-Zoshki, A.R. Kiani-Rashid et al., J. Mat. Des. Appl. 224, 117–122 (2010)

    Google Scholar 

  42. D.M. Stefanescu, Thermodynamic Properties of Iron-Base Alloys, vol. 15, ASM Handbook, 9th edn. (Metals Handbook, 1992)

  43. I. Riposan, M. Chisamera, S. Stan, Proc. AFS Cast Iron Ino. Conf., Schaumburg, Illinois, 31–41 (2005)

  44. M.M. Haque, J.M. Young, J. Mater. Process. Technol. 55, 186–192 (1995)

    Article  Google Scholar 

  45. A. Pourarian, M. Divandari, Iran. Cast. J. 30, 40–50 (2012). (In Persian)

    Google Scholar 

  46. M.M. Ibrahim, M.M. Mourad, A. Nofal et al., Int. J Cast Met. Res. 30, 61–69 (2016)

    Article  Google Scholar 

  47. S.M.A. Boutorabi, J.M. Young, V. Kondic, Cast Met. 5, 122–129 (1992)

    Article  Google Scholar 

  48. B.L. Bramfitt, Structure/Property Relationships in Irons and Steels, Metals Handbook Desk Edition, 2nd edn. (1998)

  49. T. Carlberg, H. Fredrickson, Solid Cast Met Met. Soc. 115–124 (1977)

  50. M.M. Jabbari-Behnam, P. Davami, N. Varahram, Mat. Sci. Eng. A 528, 583–588 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Divandari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalvan, M.M., Divandari, M. Microstructure of spheroidal graphite aluminum-alloyed cast irons (SGAACI) containing up to 7.5 wt% produced via in-mold process. Inter Metalcast 15, 271–280 (2021). https://doi.org/10.1007/s40962-020-00461-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00461-y

Keywords

Navigation