Skip to main content
Log in

Numerical Analysis of the Cooling System Performance and Effectiveness in Aluminum Low-Pressure Die Casting

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This study was carried out to determine the parameters affecting the performance of ring-type air cooling channels used in low-pressure die casting method for aluminum wheel casting. The main purpose of this study is to reveal the working principles of air cooling used in wheel casting. The study was conducted using computational fluid dynamics software. Field verification was performed before different numerical experiments. Then, flow rate was measured with different numerical experiments by changing the number of cooling inlets, number of cooling outlets and cooling pressure of the cooling channel. Experiments with numerical methods were examined statistically. The results showed that the flow rate of the cooling air is affected by the inlet count, the pressure of the cooling channel and the ratio between the inlet and outlet areas. Cooling system would contain air pressure of 6 bar, maximum outlet count of 12 and inlet count of 2 for optimum cooling performance and effectiveness. Ai/Ao ratio was found as 0.5 for maximum mass flow to this cooling system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. J. Duan, C. Reilly, D.M. Maijer, S.L. Cockcroft, A.B. Phillion, IOP Conf. Ser. Mater. Sci. Eng. 84, 012036 (2015). https://doi.org/10.1088/1757-899x/84/1/012036

    Article  Google Scholar 

  2. D. Sui, Z. Cui, R. Wang, S. Hao, Q. Han, Effect of cooling process on porosity in the aluminum alloy automotive wheel during low-pressure die casting. Int. J. Metalcast. 10(1), 32–42 (2015). https://doi.org/10.1007/s40962-015-0008-0

    Article  Google Scholar 

  3. P.I. Manilal, D.P.K. Singh, Z.W. Chen, Computer modeling and experimentation for thermal control of dies in permanent mold casting, in Transactions American Foundrymens Society 111, pp. 125–136 (2003)

  4. M. Ayabe, T. Nagaoka, K. Shibata, H. Nozute, H. Koyama, K. Ozaki, T. Yanagisawa, Effect of high thermal conductivity die steel in aluminum casting. Int. J. Metalcast. 2(2), 47–55 (2008). https://doi.org/10.1007/BF03355427

    Article  CAS  Google Scholar 

  5. S. Li, D. Apelian, Int. J. Metalcast. 5(1), 23–40 (2011). https://doi.org/10.1007/BF03355505

    Article  Google Scholar 

  6. J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings Properties: Properties, Processes and Applications, 1st edn. (ASM International, Materials Park, OH, 2004)

    Google Scholar 

  7. M. Shabani, A. Mazahery, Arch. Metall. Mater. 56(3), 671–675 (2011). https://doi.org/10.2478/v10172-011-0073-1

    Article  CAS  Google Scholar 

  8. L. Zhang, Y. Jiang, Z. Ma, S. Shan, Y. Jia, C. Fan, W. Wang, J. Mater. Process. Techn. 207(1–3), 107–111 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.059

    Article  CAS  Google Scholar 

  9. R. Chen, Y. Shi, Q. Xu, B. Liu, Trans. Nonferrous Metal. Soc. China 24(6), 1645–1652 (2014). https://doi.org/10.1016/S1003-6326(14)63236-2

    Article  CAS  Google Scholar 

  10. M. Ayabe, T. Nagaoka, K. Shibata, H. Nozute, H. Koyama, K. Ozaki, T. Yanagisawa, Int. J. Metalcast. 2(2), 47–55 (2008). https://doi.org/10.1007/BF03355427

    Article  CAS  Google Scholar 

  11. J.-I. Cho, C.-W. Kim, Int. J. Metalcast. 8(1), 49–55 (2014). https://doi.org/10.1007/BF03355571

    Article  Google Scholar 

  12. W. Kasprzak, M. Sahoo, J. Sokolowski, H. Yamagata, H. Kurita, The effect of the melt temperature and the cooling rate on the microstructure of the Al-20% Si alloy used for monolithic engine blocks. Int. J. Metalcast. 3(3), 55–71 (2009). https://doi.org/10.1007/BF03355453

    Article  CAS  Google Scholar 

  13. Y.S. Lerner, Mold life improvement in permanent mold casting, in 5th AFS International Conference on Permanent Mold Casting of Aluminum, pp. 81–94 (American Foundry Society, Des Plaines, IL, 2000)

  14. A. Long, D. Thornhill, C. Armstrong, D. Watson, Stress correlation between instrumentation and simulation analysis of the die for high pressure die casting. Int. J. Metalcast. 7(2), 27–41 (2013). https://doi.org/10.1007/BF03355551

    Article  Google Scholar 

  15. Y.S. Lerner, Water or air? Examining permanent mold cooling methods. Mod Cast 92(23), 26 (2002)

    Google Scholar 

  16. R.J.H. Lee, Effect of cooling circuit duration on formation of solidification shrinkage in A356 Casting automotive wheels (Scriptie, 2006). Retrieved from https://core.ac.uk/download/pdf/56360952.pdf

  17. H. Kawahara, Chapter 29: Heat and Mass Transfer in Jet Type Mold Cooling Pipe, in Developments in Heat Transfer, ed. by M.A. dos Santos Bernardes (InTech, London, 2011), pp. 573–588

  18. P.H. Oosthuizen, W.E. Carscallen, International Compress Fluid Flow (CRC Press, Florida, 2013)

    Book  Google Scholar 

  19. K. Marzec, A. Kucaba-Pietal, J. Phys. Conf. Ser. 530, 012038 (2014). https://doi.org/10.1088/1742-6596/530/1/012038

    Article  Google Scholar 

  20. M.L. Hosain, R. Bel Fdhila, A. Daneryd, Appl. Energy 164, 934–943 (2016). https://doi.org/10.1016/j.apenergy.2015.08.038

    Article  Google Scholar 

  21. E. Karapetian, G. Aguilar, S. Kimel, E.J. Lavernia, J.S. Nelson, Phys. Med. Biol. 48(1), 1 (2002). https://doi.org/10.1088/0031-9155/48/1/401

    Article  Google Scholar 

  22. M.T. Meyer, I. Mudawar, C.E. Boyack, C.A. Hale, Int. J. Heat Mass Transf. 49(1–2), 17–29 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.039

    Article  CAS  Google Scholar 

  23. X. He, J.A. Lustbader, M. Arik, R. Sharma, Int. J. Heat Mass Transf. 80, 825–834 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.006

    Article  Google Scholar 

  24. Y.A. Cengel, J.M. Cimbala, Fluid Mechanics Fundamentals and Applications (McGraw-Hill Education, New York, 2013)

    Google Scholar 

  25. X. Gao, R. Li, Spray impingement cooling: the state of the art. Adv Cool Technol Appl (2019). https://doi.org/10.5772/intechopen.80256

    Article  Google Scholar 

  26. R. Dindorf, Estimating potential energy savings in compressed air systems. Proc. Eng. 39, 204–211 (2012). https://doi.org/10.1016/j.proeng.2012.07.026

    Article  Google Scholar 

  27. R.E. Terrell, Improving compressed air system efficiency—know what you really need. Energy Eng. 96(1), 7–15 (1999). https://doi.org/10.1080/01998595.1999.10530444

    Article  Google Scholar 

  28. F. Mazzelli, A.B. Little, S. Garimella, Y. Bartosiewicz, Int. J. Heat Fluid Flow 56, 305–316 (2015). https://doi.org/10.1016/j.ijheatfluidflow.2015.08.003

    Article  Google Scholar 

  29. A. Hemidi, F. Henry, S. Leclaire, J. Seynhaeve, Y. Bartosiewicz, Appl. Therm. Eng. 29(8–9), 1523–1531 (2009). https://doi.org/10.1016/j.applthermaleng.2008.07.003

    Article  Google Scholar 

  30. G. Besagni, F. Inzoli, Appl. Therm. Eng. 117, 122–144 (2017). https://doi.org/10.1016/j.applthermaleng.2017.02.011

    Article  Google Scholar 

  31. S. Croquer, S. Poncet, Z. Aidoun, Int. J. Refrig. 61, 140–152 (2016). https://doi.org/10.1016/j.ijrefrig.2015.07.030

    Article  CAS  Google Scholar 

  32. O. Caggese, G. Gnaegi, G. Hannema, A. Terzis, P. Ott, Int. J. Heat Mass Transf. 65, 873–882 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.043

    Article  Google Scholar 

  33. S. Fechter, A. Terzis, P. Ott, B. Weigand, J. Von Wolfersdorf, M. Cochet, Int. J. Heat Mass Transf. 67, 1208–1219 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.003

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to Eren Bozkurt for his help in validation study. We would also express that this article is produced from the studies in the Master’s thesis of Hakan Yavuz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Yavuz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, H., Ertugrul, O. Numerical Analysis of the Cooling System Performance and Effectiveness in Aluminum Low-Pressure Die Casting. Inter Metalcast 15, 216–228 (2021). https://doi.org/10.1007/s40962-020-00446-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00446-x

Keywords

Navigation