Characterization of High-Cycle Bending Fatigue Behaviors for Piston Aluminum Matrix SiO2 Nano-composites in Comparison with Aluminum–Silicon Alloys


In automotive industries, one failure mechanism in engine pistons is due to the fatigue phenomenon. Therefore, to enhance fatigue properties of piston aluminum alloys is a major concern for designers. One reinforcement method could be the addition of nano-particles in the aluminum matrix. In this article, high-cycle fatigue properties of the aluminum matrix nano-composite were characterized under bending loadings and then compared to those of the aluminum–silicon alloy. For this objective, fully reversed bending fatigue tests were performed on standard specimens, based on the ISO-1143:2010 standard. Before testing, nano-composite samples were stir-casted by the addition of 1 wt% SiO2 nano-particles, and aluminum specimens were gravity-casted in a cast-iron mold. The microstructure of materials and the distribution of nano-particles in the aluminum matrix were evaluated by the optical microscopy and the field emission scanning electron microscopy. Experimental data indicated that nano-particles had a significant effect on the high-cycle fatigue lifetime. The reason for this improvement in high-cycle fatigue properties could be finer grains, higher hardness, the proper distribution of nano-particles in the aluminum matrix and stronger bonding strength at the Al/Si interface. However, based on fracture surfaces, all samples had the brittle behavior due to cleavage and quasi-cleavage marks.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14


  1. 1.

    A.E. Nassar, E.E. Nassar, Properties of aluminum matrix nano-composites prepared by powder metallurgy processing. J. King Saud Univ. Eng. Sci. 29(3), 295–299 (2017)

    Google Scholar 

  2. 2.

    P.R.M. Raju, S. Rajesh, K.S.R. Raju, V.R. Raju, Evaluation of fatigue life of Al2024/Al2O3 particulate nano-composite fabricated using stir casting technique. Mater. Today Proc. 4(2), 3188–3196 (2017)

    Google Scholar 

  3. 3.

    Y.C. Kang, S.L.I. Chan, Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85(2–3), 438–443 (2004)

    CAS  Google Scholar 

  4. 4.

    A. Mazahery, H. Abdizadeh, H. Baharvandi, Development of high-performance A356/nano-Al2O3 composites. Mater. Sci. Eng. A 518(1–2), 61–64 (2009)

    Google Scholar 

  5. 5.

    A.A. Yar, M. Montazerian, H. Abdizadeh, H. Baharvandi, Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J. Alloys Compd. 484(1–2), 400–404 (2009)

    CAS  Google Scholar 

  6. 6.

    H. Abdizadeh, R. Ebrahimifard, M.A. Baghchesara, Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: a comparative study. Compos. B Eng. 56, 217–221 (2014)

    CAS  Google Scholar 

  7. 7.

    M.K. Akbari, H. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 66, 150–161 (2015)

    Google Scholar 

  8. 8.

    G. Han, W. Zhang, G. Zhang, Z. Feng, Y. Wang, High-temperature mechanical properties and fracture mechanisms of Al–Si piston alloy reinforced with in situ TiB2 particles. Mater. Sci. Eng. A 633, 161–168 (2015)

    CAS  Google Scholar 

  9. 9.

    K. Wang, H. Jiang, Y. Wang, Q. Wang, B. Ye, W. Ding, Microstructure and mechanical properties of hypoeutectic Al–Si composite reinforced with TiCN nanoparticles. Mater. Des. 95, 545–554 (2016)

    CAS  Google Scholar 

  10. 10.

    S. Divagar, M. Vigneshwar, S. Selvamani, Impacts of nano particles on fatigue strength of aluminum based metal matrix composites for aerospace. Mater. Today Proc. 3(10), 3734–3739 (2016)

    Google Scholar 

  11. 11.

    A. Mazahery, M.O. Shabani, Plasticity and microstructure of A356 matrix nano composites. J. King Saud Univ. Eng. Sci. 25(1), 41–48 (2013)

    Google Scholar 

  12. 12.

    A. Mazahery, M.O. Shabani, Characterization of cast A356 alloy reinforced with nano SiC composites. Trans. Nonferrous Met. Soc. China 22(2), 275–280 (2012)

    CAS  Google Scholar 

  13. 13.

    J. Hemanth, Quartz (SiO2p) reinforced chilled metal matrix composite (CMMC) for automotive applications. Mater. Des. 30(2), 323–329 (2009)

    CAS  Google Scholar 

  14. 14.

    M.K. Akbari, O. Mirzaee, H. Baharvandi, Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 46, 199–205 (2013)

    Google Scholar 

  15. 15.

    M. Zeren, The effect of heat-treatment on aluminum-based piston alloys. Mater. Des. 28(9), 2511–2517 (2007)

    CAS  Google Scholar 

  16. 16.

    S.A. Sajjadi, M.T. Parizi, H. Ezatpour, A. Sedghi, Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties. J. Alloys Compd. 511(1), 226–231 (2012)

    CAS  Google Scholar 

  17. 17.

    D.K. Koli, G. Agnihotri, R. Purohit, A review on properties, behaviour and processing methods for Al-nano Al2O3 composites. Procedia Mater. Sci. 6, 567–589 (2014)

    CAS  Google Scholar 

  18. 18.

    A. Ueno, S. Miyakawa, K. Yamada, T. Sugiyama, Fatigue behavior of die casting aluminum alloys in air and vacuum. Procedia Eng. 2(1), 1937–1943 (2010)

    Google Scholar 

  19. 19.

    M.O. Shabani, F. Heydari, A.A. Tofigh, M.R. Rahimipour, M. Razavi, A. Mazahery, P. Davami, Wear properties of rheo-squeeze cast aluminum matrix reinforced with nano particulates. Prot. Met. Phys. Chem. Surf. 52(3), 486–491 (2016)

    CAS  Google Scholar 

  20. 20.

    H.R. Ezatpour, S.A. Sajjadi, M.H. Sabzevar, Y. Huang, Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater. Des. 55, 921–928 (2014)

    CAS  Google Scholar 

  21. 21.

    H. Su, W. Gao, Z. Feng, Z. Lu, Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 36, 590–596 (2012)

    CAS  Google Scholar 

  22. 22.

    H. Choi, H. Konishi, X. Li, Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al–20Si alloy. Mater. Sci. Eng. A 541, 159–165 (2012)

    CAS  Google Scholar 

  23. 23.

    A. Inegbenebor, C. Bolu, P. Babalola, A. Inegbenebor, O. Fayomi, Aluminum silicon carbide particulate metal matrix composite development via stir casting processing. Silicon 10(2), 343–347 (2018)

    CAS  Google Scholar 

  24. 24.

    J.J. Moses, S.J. Sekhar, Investigation on the tensile strength and microhardness of AA6061/TiC composites by stir casting. Trans. Indian Inst. Met. 70(4), 1035–1046 (2017)

    Google Scholar 

  25. 25.

    A. Humbertjean, T. Beck, Effect of the casting process on microstructure and lifetime of the Al-piston-alloy AlSi12Cu4Ni3 under thermo-mechanical fatigue with superimposed high-cycle fatigue loading. Int. J. Fatigue 53, 67–74 (2013)

    CAS  Google Scholar 

  26. 26.

    T.O. Mbuya, P. Reed, Micromechanisms of short fatigue crack growth in an Al–Si piston alloy. Mater. Sci. Eng. A 612, 302–309 (2014)

    CAS  Google Scholar 

  27. 27.

    M. Wang, J. Pang, S. Li, Z. Zhang, Low-cycle fatigue properties and life prediction of Al–Si piston alloy at elevated temperature. Mater. Sci. Eng. A 704, 480–492 (2017)

    CAS  Google Scholar 

  28. 28.

    M. Azadi, M. Zolfaghari, S. Rezanezhad, M. Azadi, Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Appl. Phys. A 124(5), 377 (2018)

    Google Scholar 

  29. 29.

    M. Azadi, S. Safarloo, F. Loghman, R. Rasouli, Microstructural and thermal properties of piston aluminum alloy reinforced by nano-particles, in AIP Conference Proceedings, vol. 1920, no. 1 (2018), p. 020027

  30. 30.

    M. Azadi, M. Zolfaghari, S. Rezanezhad, M. Azadi, Preparation of various aluminium matrix composites reinforcing by nano-particles with different dispersion methods, in Iran International Aluminium Conference (2018)

  31. 31.

    M. Mollaei, M. Azadi, H. Tavakoli, A parametric study on mechanical properties of aluminum-silicon/SiO2 nano-composites by a solid–liquid phase processing. Appl. Phys. A 124(7), 504 (2018)

    Google Scholar 

  32. 32.

    S.A. Sajjadi, H. Ezatpour, H. Beygi, Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting. Mater. Sci. Eng. A 528(29–30), 8765–8771 (2011)

    CAS  Google Scholar 

  33. 33.

    A.D. Hamedan, M. Shahmiri, Production of A356–1 wt% SiC nanocomposite by the modified stir casting method. Mater. Sci. Eng. A 556, 921–926 (2012)

    Google Scholar 

  34. 34.

    S. Tahamtan, A. Halvaee, M. Emamy, M. Zabihi, Fabrication of Al/A206–Al2O nano/micro composite by combining ball milling and stir casting technology. Mater. Des. 49, 347–359 (2013)

    CAS  Google Scholar 

  35. 35.

    M.K. Akbari, H. Baharvandi, O. Mirzaee, Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties. Compos. B Eng. 55, 426–432 (2013)

    Google Scholar 

  36. 36.

    H. Beygi, S. Sajjadi, S. Zebarjad, Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles. Mater. Sci. Eng. A 607, 81–88 (2014)

    CAS  Google Scholar 

  37. 37.

    H. Ramezanalizadeh, M. Emamy, M. Shokouhimehr, A novel aluminum based nanocomposite with high strength and good ductility. J. Alloys Compd. 649, 461–473 (2015)

    CAS  Google Scholar 

  38. 38.

    D. Myriounis, T. Matikas, S. Hasan, Fatigue behaviour of SiC particulate-reinforced A359 aluminium matrix composites. Strain 48(4), 333–341 (2012)

    CAS  Google Scholar 

  39. 39.

    S. Rezanezhad, M. Azadi, and M. Azadi, Influence of heat treatment on high-cycle fatigue and fracture behaviors of piston aluminum alloy under fully-reversed cyclic bending, Metals and Materials International (2019), pp. 1–11

  40. 40.

    S. Soltani, R.A. Khosroshahi, R.T. Mousavian, Z.Y. Jiang, A.F. Boostani, D. Brabazon, Stir casting process for manufacture of Al–SiC composites. Rare Met. 36(7), 581–590 (2017)

    CAS  Google Scholar 

  41. 41.

    M. Khademian, A. Alizadeh, A. Abdollahi, Fabrication and characterization of hot rolled and hot extruded boron carbide (B4C) reinforced A356 aluminum alloy matrix composites produced by stir casting method. Trans. Indian Inst. Met. 70(6), 1635–1646 (2017)

    CAS  Google Scholar 

  42. 42.

    ASTM E10-12, Standard Test Method for Brinell Hardness of Metallic Materials (ASTM International, 2012)

  43. 43.

    ISO 1143:2010, Metallic Materials—Rotating Bar Bending Fatigue Testing (International Organization for Standardization, 2010)

  44. 44.

    Y.L. Lee, J. Pan, R. Hathaway, M. Barkey, Fatigue Testing and Analysis: Theory and Practice (Butterworth-Heinemann, Oxford, 2005)

    Google Scholar 

  45. 45.

    M.J. Khameneh, M. Azadi, Reliability prediction, scatter-band analysis and fatigue limit assessment of high-cycle fatigue properties in EN-GJS700-2 ductile cast iron, in MATEC Web of Conferences, vol. 165: EDP Sciences (2018), p. 10012

  46. 46.

    R. Larson, B. Farber, Student’s Solutions Manual diacriTech, Elementary Statistics: Picturing the World (Pearson Education Incorporated, 2012)

  47. 47.

    L. Han, Y. Sui, Q. Wang, K. Wang, Y. Jiang, Effects of Nd on microstructure and mechanical properties of cast Al–Si–Cu–Ni–Mg piston alloys. J. Alloys Compd. 695, 1566–1572 (2017)

    CAS  Google Scholar 

  48. 48.

    A. Salehi, A. Babakhani, S.M. Zebarjad, Microstructural and mechanical properties of Al-SiO2 nanocomposite foams produced by an ultrasonic technique. Mater. Sci. Eng. A 638, 54–59 (2015)

    CAS  Google Scholar 

  49. 49.

    C. Chong, Z.X. Liu, R. Bo, M.X. Wang, Y.G. Weng, Z.Y. Liu, Influences of complex modification of P and RE on microstructure and mechanical properties of hypereutectic Al-20Si alloy. Trans. Nonferrous Met. Soc. China 17(2), 301–306 (2007)

    Google Scholar 

  50. 50.

    S. Weixi, G. Bo, T. Ganfeng, L. Shiwei, H. Yi, Y. Fuxiao, Effect of neodymium on primary silicon and mechanical properties of hypereutectic Al-15% Si alloy. J. Rare Earths 28, 367–370 (2010)

    Google Scholar 

  51. 51.

    H. Liao, Y. Sun, G. Sun, Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium. Mater. Sci. Eng. A 335(1–2), 62–66 (2002)

    Google Scholar 

  52. 52.

    B. Sunil, V. Rajeev, S. Jose, A statistical study on the dry wear and friction characteristics of Al–12.6 Si–3Cu–(2–2.6 wt%) Ni piston alloys. Mater. Today Proc. 5(1), 1131–1137 (2018)

    CAS  Google Scholar 

  53. 53.

    M.K. Akbari, H. Baharvandi, O. Mirzaee, Nano-sized aluminum oxide reinforced commercial casting A356 alloy matrix: evaluation of hardness, wear resistance and compressive strength focusing on particle distribution in aluminum matrix. Compos. B Eng. 52, 262–268 (2013)

    Google Scholar 

  54. 54.

    H. Junker, Pistons and Engine Testing (Mahle Gmbh, Stuttgart, 2012)

    Google Scholar 

  55. 55.

    S.H. Juang, L.J. Fan, H.P.O. Yang, Influence of preheating temperatures and adding rates on distributions of fly ash in aluminum matrix composites prepared by stir casting. Int. J. Precis. Eng. Manuf. 16(7), 1321–1327 (2015)

    Google Scholar 

  56. 56.

    G.E. Dieter, D.J. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1986)

    Google Scholar 

  57. 57.

    O. Basquin, The exponential law of endurance tests, in Proceeding American Society Testing Materials, vol. 10 (1910), pp. 625–630

  58. 58.

    G.H. Zhang, J.X. Zhang, B.C. Li, C. Wei, Characterization of tensile fracture in heavily alloyed Al–Si piston alloy. Prog. Nat. Sci. Mater. Int. 21(5), 380–385 (2011)

    Google Scholar 

  59. 59.

    G. Zhang, J. Zhang, B. Li, W. Cai, Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al–Si piston alloy during low-cycle fatigue loading. Mater. Sci. Eng. A 561, 26–33 (2013)

    CAS  Google Scholar 

  60. 60.

    F. Grosselle, Development of Innovative Applications in Non-ferrous Metals, PhD Thesis, University of Padua, Italy, 2010

  61. 61.

    M. Joyce, C. Styles, P. Reed, Elevated temperature short crack fatigue behaviour in near eutectic Al–Si alloys. Int. J. Fatigue 25(9–11), 863–869 (2003)

    CAS  Google Scholar 

  62. 62.

    V. Firouzdor, M. Rajabi, E. Nejati, F. Khomamizadeh, Effect of microstructural constituents on the thermal fatigue life of A319 aluminum alloy. Mater. Sci. Eng. A 454, 528–535 (2007)

    Google Scholar 

  63. 63.

    J. Yi, P. Lee, T. Lindley, T. Fukui, Statistical modeling of microstructure and defect population effects on the fatigue performance of cast A356-T6 automotive components. Mater. Sci. Eng. A 432(1–2), 59–68 (2006)

    Google Scholar 

  64. 64.

    K. Gall, N. Yang, M. Horstemeyer, D.L. McDowell, J. Fan, The debonding and fracture of Si particles during the fatigue of a cast Al–Si alloy. Metall. Mater. Trans. A 30(12), 3079–3088 (1999)

    Google Scholar 

  65. 65.

    T. Beck, D. Lohe, J. Luft, I. Henne, Damage mechanisms of cast Al–Si–Mg alloys under superimposed thermal–mechanical fatigue and high-cycle fatigue loading. Mater. Sci. Eng. A 468, 184–192 (2007)

    Google Scholar 

  66. 66.

    K.S. Chan, P. Jones, Q. Wang, Fatigue crack growth and fracture paths in sand cast B319 and A356 aluminum alloys. Mater. Sci. Eng. A 341(1–2), 18–34 (2003)

    Google Scholar 

  67. 67.

    M. Kutz, Mechanical Engineers’ Handbook (Wiley, Hoboken, 1998)

    Google Scholar 

Download references


The authors would tend to thank Motorsazi Pooya Neyestanak (MPN) Company, in Isfahan, Iran, for their financial support, in addition to provide raw materials and to perform the casting process.

Author information



Corresponding author

Correspondence to Mohammad Azadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zolfaghari, M., Azadi, M. & Azadi, M. Characterization of High-Cycle Bending Fatigue Behaviors for Piston Aluminum Matrix SiO2 Nano-composites in Comparison with Aluminum–Silicon Alloys. Inter Metalcast 15, 152–168 (2021).

Download citation


  • nano-composite
  • aluminum–silicon alloy
  • SiO2 nano-particles
  • high-cycle fatigue
  • fracture behavior