Skip to main content

Effect of Heat Treatment on the Characterizations of Functionally Graded Al/Al2Cu Fabricated by Horizontal Centrifugal Casting


In the present paper, in situ centrifugal casting as an advanced material processing method is proposed to fabricate Al–26 wt% Cu–7wt% Si FG pipe with the density of 3.5 g/cm3 and with the wear resistance of 1.85064 × 10−16 m3/mN. The casting mould is preheated to approximately 200 °C to avoid chilling effects, segregation, porosity and compensation of the shrinkage of the alloy during the casting. Variations of the Al2Cu-based content are investigated by the field emission scanning electron microscopy (FESEM) in conjunction with image analyser software (MATLAB code). The microstructure results show that the Al2Cu content smoothly decreases from the outer layer containing 44.4 vol% to inner layer containing 37.8 vol% due to the difference in density of constituent phases and elements. The graded properties such as Vickers hardness, coefficient of thermal expansion and mechanical properties of the present FG pipe are measured to show the significant dependence of the microstructure. It shows that Vickers hardness value gradually decreases from the outer with 331.3 HV to the inner with 141.0 HV. Furthermore, the heat treatment of the samples is conducted in boiling water (100 °C) for 4.5 h to promote the formations of new Al2Cu particles into the α-Al phase and consequently improve the hardness and CTE of the FG pipe.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17


  1. J. Gao, C. Wang, Mater. Sci. Eng. A 292(2), 207–215 (2000)

    Article  Google Scholar 

  2. A. Ruys, D. Sun, (2002)

  3. S.E. Vahdat, Arch. Foundry Eng. 16(1), 131–137 (2016)

    CAS  Article  Google Scholar 

  4. Y. Fukui, JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry 34(1), 144–148 (1991)

    Article  Google Scholar 

  5. X. Lin, C. Liu, H. Xiao, Compos. B Eng. 45(1), 8–21 (2013)

    CAS  Article  Google Scholar 

  6. J.R. Davis, J.R.D. Associates, A.S.M.I.H. Committee, Aluminum and Aluminum Alloys (ASM International, Cleveland, 1993)

    Google Scholar 

  7. A. Mehditabar, G.H. Rahimi, S.E. Vahdat, Multidiscipline Modeling in Materials and Structures (2018)

  8. Y. Watanabe, Y. Hattori, H. Sato, J. Mater. Process. Technol. 221, 197–204 (2015)

    CAS  Article  Google Scholar 

  9. T. Kunimine, M. Shibuya, H. Sato, Y. Watanabe, J. Mater. Process. Technol. 217, 294–301 (2015)

    CAS  Article  Google Scholar 

  10. N. Radhika, R. Raghu, Trans. Nonferr. Met. Soc. China 26(4), 905–916 (2016)

    CAS  Article  Google Scholar 

  11. I. Shishkovsky, F. Missemer, I. Smurov, Phys. Procedia 39(Supplement C), 382–391 (2012)

    CAS  Article  Google Scholar 

  12. Z.H. Melgarejo, O.M. Suárez, K. Sridharan, Compos. A Appl. Sci. Manuf. 39(7), 1150–1158 (2008)

    Article  Google Scholar 

  13. R. Ekici, M.K. Apalak, M. Yildirim, Compos. B Eng. 42(6), 1497–1507 (2011)

    Article  Google Scholar 

  14. M. Bhattacharyya, A.N. Kumar, S. Kapuria, Mater. Sci. Eng. A 487(1–2), 524–535 (2008)

    Article  Google Scholar 

  15. Y. Watanabe, M. Kurahashi, I.-S. Kim, S. Miyazaki, S. Kumai, A. Sato, S.-I. Tanaka, Compos. A Appl. Sci. Manuf. 37(12), 2186–2193 (2006)

    Article  Google Scholar 

  16. V.C. Nardone, K.M. Prewo, Scr. Metall. 23(2), 291–292 (1989)

    CAS  Article  Google Scholar 

  17. J.-W. Park, H.-J. Kim, Int. J. Metalcast. 11(4), 802–811 (2017)

    CAS  Article  Google Scholar 

  18. Z.-H. Guo, F.-R. Xiao, S.-L. Lu, R.-L. Liu, B. Liao, Int. J. Metalcast. 11(3), 448–455 (2017)

    CAS  Article  Google Scholar 

  19. J.F.Á. Antolín, J.A. Lozano, C.H.Á. Pérez, Int. J. Metalcast. 11(3), 467–474 (2017)

    Article  Google Scholar 

  20. ASTM, E384: Standard Test Method for Microindentation Hardness of Materials (ASTM International, West Conshohocken, PA, 2017)

  21. P. Snopiński, M. Król, Metals 8(11), 969 (2018). (961–914)

    Article  Google Scholar 

  22. P. Snopiński, M. Król, T. Tomasz, B. Krupińska, J. Therm. Anal. Calorim. 133(1), 379–390 (2018)

    Article  Google Scholar 

  23. Y. Watanabe, H. Sato, T. Ogawa, I.-S. Kim, Mater. Trans. 48(11), 2945–2952 (2007)

    CAS  Article  Google Scholar 

  24. A.J. Clarke, D. Tourret, S.D. Imhoff, P.J. Gibbs, K. Fezzaa, J.C. Cooley, W.-K. Lee, A. Deriy, B.M. Patterson, P.A. Papin, K.D. Clarke, R.D. Field, J.L. Smith, Adv. Eng. Mater. 17(4), 454–459 (2015)

    CAS  Article  Google Scholar 

  25. D.O. Svensson, High Entropy Alloys: Breakthrough Materials for Aero Engine Applications? Master’s Thesis (2014)

  26. J.H. Westbrook, R.L. Fleischer, Intermetallic Compounds, Basic Mechanical Properties and Lattice Defects of (Wiley, New York, 2000)

    Google Scholar 

  27. C.L. Chen, A. Richter, R.C. Thomson, Intermetallics 17(8), 634–641 (2009)

    Article  Google Scholar 

  28. C.L. Chen, A. Richter, R.C. Thomson, Intermetallics 18(4), 499–508 (2010)

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Seyed Ebrahim Vahdat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehditabar, A., Rahimi, G.H., Krol, M. et al. Effect of Heat Treatment on the Characterizations of Functionally Graded Al/Al2Cu Fabricated by Horizontal Centrifugal Casting. Inter Metalcast 14, 962–976 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • FGM
  • hardness
  • mechanical properties
  • CTE
  • microstructure