Skip to main content
Log in

Development and Characterization of In Situ AlSi5Cu3/TiB2 Composites

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present investigation focuses on improvement in mechanical properties of AlSi5Cu3 aluminum alloy by in situ synthesis of TiB2 reinforcement particles. Stochiometrically calculated amount of potassium tetrafluoro borate and potassium hexafluoro titanate were used for the development of 3 and 6 wt% particles of TiB2 in the liquid metal. The melt having TiB2 particles was allowed to solidify naturally in the sand mold. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the formation of hexagonal TiB2 particles within the matrix. Microstructural studies concluded the formation of micron size TiB2 particles and reduction in grain size. Ultimate tensile strength increased from 21 to 64% and hardness increased from 30 to 50% compared to AlSi5Cu3 alloy due to the formation of 3% and 6% TiB2 particles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. North American Light Vehicle Aluminum Content Study. (Ducker Worldwide Study, 2016), http://www.ducker.com/news-insights/ducker-worldwide-studyaluminum-content-cars-public-summary. Accessed 31 Aug 2017

  2. A.S.M. Handbook, Properties and selection: nonferrous alloys and special-purpose materials. ASM Int. 2, 597–599 (1990)

    Google Scholar 

  3. J.H. Sokolowski, M.B. Djurdjevic, C.A. Kierkus et al., J. Mater. Process. Technol. 109, 174 (2001). https://doi.org/10.1016/S0924-0136(00)00793-7

    Article  CAS  Google Scholar 

  4. R. Mahmudi, P. Sepehrband, H.M. Ghasemi, Mater. Lett. 60, 2606 (2006). https://doi.org/10.1016/j.matlet.2006.01.046

    Article  CAS  Google Scholar 

  5. S. Poria, P. Sahoo, G. Sutradhar, Silicon 8, 591 (2016). https://doi.org/10.1007/s12633-016-9437-5

    Article  CAS  Google Scholar 

  6. S. Poria, G. Sutradhar, P. Sahoo, Mater. Res. Express 5, 056509 (2018). https://doi.org/10.1088/2053-1591/aac0df

    Article  CAS  Google Scholar 

  7. Y. Pazhouhanfar, B. Eghbali, Mater. Sci. Eng. A 172, 180 (2018). https://doi.org/10.1016/j.msea.2017.10.087

    Article  CAS  Google Scholar 

  8. S.C. Tjong, Z.Y. Ma, Mater. Sci. Eng. R 29, 49 (2000). https://doi.org/10.1016/S0927-796X(00)00024-3

    Article  Google Scholar 

  9. S.M.Y. Kaku, A.K. Khanra, M.J. Davidson, J Alloys Compd 666, 675 (2018). https://doi.org/10.1016/j.jallcom.2018.03.088

    Article  CAS  Google Scholar 

  10. R. Gecu, A. Karaaslan, Inter. Metalcast. 1, 9 (2018). https://doi.org/10.1007/s40962-018-0253-0

    Article  CAS  Google Scholar 

  11. S. Soltani, R.A. Khosroshahi, R.T. Mousavian et al., Rare Met. 36, 581 (2017). https://doi.org/10.1007/s12598-015-0565-7

    Article  CAS  Google Scholar 

  12. S. Agrawal, A.K. Ghose, I. Chakrabarty, Mater. Des. 113, 195 (2017)

    Article  CAS  Google Scholar 

  13. J.M. Mistry, P.P. Gohil, Compos Part B Eng 190, 204 (2019). https://doi.org/10.1016/j.compositesb.2018.10.074

    Article  CAS  Google Scholar 

  14. R. Mohammadi Badizi, M. Askari-Paykani, A. Parizad et al., Inter. Metalcast. 12, 565 (2018)

    Article  CAS  Google Scholar 

  15. A.R. Kennedy, A.E. Karantzalis, S.M. Wyatt, J. Mater. Sci. 34, 933 (1999). https://doi.org/10.1023/A:1004519306186

    Article  CAS  Google Scholar 

  16. M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Mater. Des. 66, 150 (2015). https://doi.org/10.1016/j.matdes.2014.10.048

    Article  CAS  Google Scholar 

  17. A.M. Samuel, H.W. Doty, S. Valtierra et al., Inter. Metalcast. 11, 305 (2017). https://doi.org/10.1007/s40962-016-0075-x

    Article  CAS  Google Scholar 

  18. B. Yang, Y.Q. Wang, B.L. Zhou, Metall. Mater. Trans. B 29, 635 (1998). https://doi.org/10.1007/s11663-998-0098-7

    Article  Google Scholar 

  19. M. Emamy, M. Mahta, J. Rasizadeh, Compos. Sci. Technol. 66, 1063 (2006). https://doi.org/10.1016/j.compscitech.2005.04.016

    Article  CAS  Google Scholar 

  20. B.S. Murty, S.A. Kori, M. Chakraborty, Int. Mater. Rev. 47, 3 (2002). https://doi.org/10.1179/095066001225001049

    Article  CAS  Google Scholar 

  21. Y. Han, X. Liu, X. Bian, Compos. A 33, 439 (2002). https://doi.org/10.1016/S1359-835X(01)00124-5

    Article  Google Scholar 

  22. J. Liu, Z. Liu, Z. Dong et al., J. Alloys Compd. 1008, 1017 (2018). https://doi.org/10.1016/j.jallcom.2018.06.303

    Article  CAS  Google Scholar 

  23. A. Changizi, A. Kalkanli, N. Sevinc, J. Alloys Compd. 509, 237 (2011). https://doi.org/10.1016/j.jallcom.2010.08.089

    Article  CAS  Google Scholar 

  24. P. Davies, J.L.F. Kellie, D.P. Patron, J.V. Wood, Metal Matrix Alloys. U.S. Patent 6,228,185, 2001

  25. S. Kumar, V.S. Sarma, B.S. Murty, Mater. Sci. Eng. A 476, 333 (2008). https://doi.org/10.1016/j.msea.2007.04.113

    Article  CAS  Google Scholar 

  26. L. Lü, M.O. Lai, Y. Su et al., Scripta Mater. 45, 1017 (2001). https://doi.org/10.1016/S1359-6462(01)01128-9

    Article  Google Scholar 

  27. A.M. Davidson, D. Regener, Compos. Sci. Technol. 60, 865 (2000). https://doi.org/10.1016/S0266-3538(99)00151-7

    Article  CAS  Google Scholar 

  28. S. Natarajan, R. Narayanasamy, S.K. Babu et al., Mater. Des. 30, 2521 (2009). https://doi.org/10.1016/j.matdes.2008.09.037

    Article  CAS  Google Scholar 

  29. H.M. Rajan, S. Ramabalan, I. Dinaharan et al., Arch. Civil Mech. Eng. 14, 72 (2014). https://doi.org/10.1016/j.acme.2013.05.005

    Article  Google Scholar 

  30. S. Kumar, M. Chakraborty, V.S. Sarma et al., Wear 265, 134 (2008). https://doi.org/10.1016/j.wear.2007.09.007

    Article  CAS  Google Scholar 

  31. C.S. Ramesh, S. Pramod, R. Keshavamurthy, Mater. Sci. Eng. A 528, 4125 (2011). https://doi.org/10.1016/j.msea.2011.02.024

    Article  CAS  Google Scholar 

  32. Z. Zhang, D.L. Chen, Mater. Sci. Eng. A 483, 148 (2008). https://doi.org/10.1016/j.msea.2006.10.184

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the support from Department of Science and Technology (DST), New Delhi, sponsored SMART Foundry Project (DST/TSG/AMT/2015/332 dated 17/08/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Sutaria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayar, V.S., Sutaria, M.P. Development and Characterization of In Situ AlSi5Cu3/TiB2 Composites. Inter Metalcast 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-019-00328-x

Keywords

Navigation