Advertisement

Effect of Vanadium and Zirconium Additions on Mechanical Properties and Microstructure of Gravity Die-Cast AlSi9Cu2 Alloy Cylinder Heads

  • Engin Kilinc
  • Neset Kiremitci
  • Yucel Birol
  • Esra Dokumaci
Article
  • 83 Downloads

Abstract

Systematic work was performed in the present study to investigate the effect of V and Zr additions on microstructural evolution and mechanical properties of the gravity die-cast AlSi9Cu2 alloy in T6 temper. The equiaxed dendritic structure typical of AlSi9Cu2 alloy is replaced by a much finer columnar dendritic network when modified with V and Zr additions. This remarkable structural refinement is believed to be linked with the formation of the V- and Zr-containing phases that form during solidification. The co-addition of V and Zr affects the tensile properties and hardness more significantly than individual additions. While the increase in strength is accompanied by a decrease in elongation, the penalty to be paid, particularly in the case of co-addition of V and Zr, is rather small and thus could be tolerated for the superior strength in some applications.

Keywords

aluminium alloys automotive microstructure mechanical properties 

Notes

Acknowledgements

It is a great pleasure to thank Kent Jiang, Yinxia Song, Yinz Hongli, Erkan Ertan (Chongqing QIN’AN Foundry Co. Ltd.) for their help with the experiments.

Supplementary material

40962_2018_238_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (DOCX 3222 kb)
40962_2018_238_MOESM2_ESM.docx (105 kb)
Supplementary material 2 (DOCX 104 kb)

References

  1. 1.
    G. Camicia, G. Timelli, Grain refinement of gravity die cast secondary AlSi7Cu3Mg alloys for automotive cylinder heads. Trans. Nonferrous Met. Soc. China 26, 1211–1221 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Birol, A. Ebrinc, Fatigue failures in low pressure die cast AlSi10Mg cylinder heads. Int. J. Cast Met. Res. 21, 408–415 (2008)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, G.L. Garagnani, Mater. Sci. Eng. A 610, 414 (2014)CrossRefGoogle Scholar
  5. 5.
    R. Molina, P. Amalberto, M. Rosso, Mechanical characterization of aluminium alloys for high temperature applications, part 1: Al–Si–Cu alloys. Metall. Sci. Technol. 29, 5–15 (2011)Google Scholar
  6. 6.
    M. Garat, G. Laslaz, Improved aluminum alloys for common rail diesel cylinder heads. AFS Trans. 115, 89–96 (2007)Google Scholar
  7. 7.
    Y.J. Li, S. Brusethaug, A. Olsen, Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment. Scr. Mater. 54, 99–103 (2006)CrossRefGoogle Scholar
  8. 8.
    H.S.S. Seoul, G.D.K. Gyeonggi-do, US Patent, 2012/0275949 A1 Nov. 22 (2012)Google Scholar
  9. 9.
    L. Ceschini, A. Morri, S. Toschi, S. Seifeddine, Room and high temperature fatigue behaviour of the A354 and C355 (Al–Si–Cu–Mg) alloys: role of microstructure and heat treatment. Mater. Sci. Eng. A 653, 129–138 (2016)CrossRefGoogle Scholar
  10. 10.
    A.M. Mohammed, F.H. Samuel, S.A. Kahtani, Microstructure, tensile properties and fracture behavior of high temperature Al–Si–Mg–Cu cast alloys. Mater. Sci. Eng. A 577, 64–72 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Man, L. Jing, S.G. Jie, The effects of Cu addition on the microstructure and thermal stability of an Al–Mg–Si alloy. J. Alloys Compd. 437, 146–150 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Han, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Optimising the tensile properties of Al–Si–Cu–Mg 319 type alloys: role of solution heat treatment. Mater. Des. 58, 426–438 (2014)CrossRefGoogle Scholar
  13. 13.
    A.R. Farkoosh, M. Javidani, M. Hoseini, D. Larouche, M. Pekguleryuz, Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: thermodynamic assessment and experimental investigation for alloy design. J. Alloys Compd. 551, 596–606 (2013)CrossRefGoogle Scholar
  14. 14.
    A.R. Farkoosh, M. Guleryuz, Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300 C: effects of Mg and Q precipitate phase. Mater. Sci. Eng. A 621, 277–286 (2015)CrossRefGoogle Scholar
  15. 15.
    W. Kasprzak, Z. Deng, J. Powell and M. Niewczas, Aging characteristics, dimensional stability and assessment of high temperature performance of cast Al–Si alloy for power train applications, in 12th International Conference on Aluminum Alloys, Yokohama, Japan (2010)Google Scholar
  16. 16.
    P.W. Voorhees, Alloys: scandium overtakes zirconium. Nat. Mater. 5, 435–436 (2006)CrossRefGoogle Scholar
  17. 17.
    W. Kasprzak, D. Emadi, M. Sahoo, M. Aniolek, Development of aluminium alloys for high temperature applications in diesel engines. Mater. Sci. Forum 618–619, 595–600 (2009)CrossRefGoogle Scholar
  18. 18.
    W. Kasprzak, D.L. Chen, S.K. Shaha, Heat treatment development for a rapidly solidified heat resistant cast Al-Si alloy. J. Mater. Eng. Perform. 22, 1838–1847 (2013)CrossRefGoogle Scholar
  19. 19.
    W. Kasprzak, B.S. Amirkhiz, M. Niewczas, Structure and properties of cast Al–Si based alloy with Zr–V–Ti additions and its evaluation of high temperature performance. J. Alloys Compd. 595, 67–79 (2014)CrossRefGoogle Scholar
  20. 20.
    H.A. Elhadari, H.A. Patel, D.L. Chen, W. Kasprzak, Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions. Mater. Sci. Eng. A 528, 8128–8138 (2011)CrossRefGoogle Scholar
  21. 21.
    S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Thermal stability of(AlSi)x(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr. Thermochim. Acta 595, 11–16 (2014)CrossRefGoogle Scholar
  22. 22.
    G. Laslaz, US Patent, 0133949 Al, June 22 (2006)Google Scholar
  23. 23.
    K.E. Knipling, D.C. Dunand, D.N. Seidman, Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Int. J. Mater. Res. 97, 246–265 (2006)Google Scholar
  24. 24.
    Y.C. Chen, M.E. Fine, J.R. Weertman, R.E. Lewis, Coarsening behavior of L12 structured Al3(Zrx, V1−x) precipitates in rapidly solidified Al–Zr–V alloy. Scr. Metall. 21, 1003–1008 (1987)CrossRefGoogle Scholar
  25. 25.
    Y. Wu, H. Liao, K. Zhou, Effect of minor addition of vanadium on mechanical properties and microstructures of as-extruded near eutectic Al–Si–Mg alloy. Mater. Sci. Eng. A 602, 41–48 (2014)CrossRefGoogle Scholar
  26. 26.
    F. Meng, Z. Wang, Y. Zhao, D. Zhang, W. Zhang, Microstructures and properties evolution of Al–Cu–Mn alloy with addition of vanadium. Metals 7, 10 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Meng, J. Cui, Z. Zhao, Y. Zuo, Effect of vanadium on the microstructures and mechanical properties of an Al–Mg–Si–Cu–Cr–Ti alloy of 6XXX series. J. Alloys Compd. 573, 102–111 (2013)CrossRefGoogle Scholar
  28. 28.
    G.H. Garza-Elizondo, A.M. Samuel, S. Valtierra, F.H. Samuel, Effect of transition metals on the tensile properties of 354 Alloy: role of precipitation hardening. Int. J. Metalcast. 11(3), 413–427 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Hernandez-Sandoval, A.M. Samuel, F.H. Samuel, S. Valtierra, Thermal analysis for detection of Zr-rich phases in Al–Si–Cu–Mg 354-type alloy. Int. J. Metalcast. 11(3), 428–439 (2017)CrossRefGoogle Scholar
  30. 30.
    M.S. Zedalis, M.E. Fine, Precipitation and Ostwald ripening in dilute Al base-ZrV alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 17, 2187–2198 (1986)CrossRefGoogle Scholar
  31. 31.
    M. Zamani, L. Morini, L. Ceschini, S. Seifeddine, The role of transition metal additions on the ambient and elevated temperature properties of Al–Si alloys. Mater. Sci. Eng. A 693, 42–50 (2017)CrossRefGoogle Scholar
  32. 32.
    S.K. Shaha, F. Czerwinski, W. Kasprza, J. Friedman, D.L. Chen, Effect of Zr, V and Ti on hot compression behavior of the Al-Si cast alloy for powertrain applications. J. Alloys Compd. 615, 1019–1031 (2014)CrossRefGoogle Scholar
  33. 33.
    R. Mahmudi, P. Sepehrband, H.M. Ghasemi, Improved properties of A319 aluminum casting alloy modified with Zr. Mater. Lett. 60, 2606–2610 (2006)CrossRefGoogle Scholar
  34. 34.
    F. Czerwinski, S.K. Shaha, W. Kasprzak, J. Friedman, D.L. Chen, Aging characteristics of the Al-Si-Cu-Mg cast alloy modified with transition metals Zr, V and Ti, in 4th International Conference on Advances in Solidification Processes (ICASP-4), IOP Conference. Series: Materials Science and Engineering, vol. 117, p. 012031 (2016)Google Scholar
  35. 35.
    S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Effect of Cr, Ti, V, and Zr Micro-additions on microstructure and mechanical properties of the Al–Si–Cu–Mg cast alloy. Metall. Mater. Trans. A 47A, 2396 (2016)CrossRefGoogle Scholar
  36. 36.
    R. Haghayeghi, P. Kapranos, Comparison on grain refinement efficiency of peritectic and eutectic alloying elements on pure aluminium. Met. Mater. Int. 20, 713–717 (2014)CrossRefGoogle Scholar
  37. 37.
    F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M. Zhang, Revisiting the role of peritectics in grain refinement of Al alloys. Acta Mater. 61, 360–370 (2013)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  1. 1.Chongqing QIN’AN Foundry Co. Ltd.ChongqingChina
  2. 2.Department of Metallurgical and Materials EngineeringDokuz Eylul UniversityIzmirTurkey
  3. 3.EJSEN Precision Parts Co. Ltd.ShanghaiChina

Personalised recommendations