Effect of Cooling Rate on the Grain Refinement of Mg–3Nd Alloys by Aluminum

  • Lei Wang
  • Yicheng Feng
  • Erjun Guo
  • Yang Yang
  • Yanhong Chen
  • Liping Wang
Article
  • 26 Downloads

Abstract

The effect of cooling rate on the grain refinement of Mg–3Nd alloys refined by Al was investigated in this work. The experimental results show that the grain size of Mg–Nd alloys can be refined by increasing the cooling rate and the Al addition. When the content of Al is more than 2%, Al2Nd particles can be observed inside the grains, which can be act as an effective nucleating site. The orientation relationship between Al2Nd particles and α-Mg matrix is determined as \( [101]_{{{\text{Al}}_{2} {\text{Nd}}}} \parallel [\bar{1}100]_{\text{Mg}} \), \( (\bar{2}22)_{{{\text{Al}}_{2} {\text{Nd}}}} \parallel (0002)_{\text{Mg}} \) and \( [\bar{1}11]_{{{\text{Al}}_{2} {\text{Nd}}}} \parallel [0001]_{\text{Mg}} \), \( (02\bar{2})_{{{\text{Al}}_{2} {\text{Nd}}}} \parallel (01\bar{1}0)_{\text{Mg}} \) by TEM analysis. The refining effect is affected by the size and the number density of Al2Nd particle. The minimum nucleating size of observed Al2Nd particle in Mg–3Nd–2Al and Mg–3Nd–3Al alloys decreases with increasing the cooling rate, which are 1.5 and 1 μm, when the cooling rate is 1.2 and 3.5 °C/s, respectively. The number density of Al2Nd particle in Mg–3Nd–2Al alloy increases with increasing the cooling rate from 0.3 to 1.2 °C/s and decreases with further increasing the cooling rate to 3.5 °C/s. And the number density of Al2Nd particle in Mg–3Nd–3Al alloy increases with increasing the cooling rate.

Keywords

cooling rate Al2Nd particle grain refinement heterogeneous nucleation 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the Heilongjiang Province Natural Science Foundation (No. ZD2016011) and Harbin Science and Technology Innovation Talent Funding Project (No. 2016RAQXJ014).

References

  1. 1.
    S. Saha, C. Ravindran, Grain refinement of AZ91E and Mg–9 wt% Al binary alloys using zinc oxide. Int. J. Metalcast. 9(1), 33–42 (2015)CrossRefGoogle Scholar
  2. 2.
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, What is going on in magnesium alloys? J. Mater. Sci. Technol. 34, 245–247 (2018)CrossRefGoogle Scholar
  3. 3.
    Q. Wen, K.K. Deng, J.Y. Shi, B.P. Zhang, W. Liang, Effect of Ca addition on the microstructure and tensile properties of Mg–4.0Zn–2.0Gd alloys. Mater. Sci. Eng. A 609(27), 1–6 (2014)CrossRefGoogle Scholar
  4. 4.
    M.A. Easton, D.H. Stjohn, An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metall. Mater. Trans. A 36(7), 1911–1920 (2005)CrossRefGoogle Scholar
  5. 5.
    Y. Ali, D. Qiu, B. Jiang, F.S. Pan, M.X. Zhang, Current research progress in grain refinement of cast magnesium alloys: a review article. J. Alloys Compd. 619, 639–651 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Qiu, M.X. Zhang, Effect of active heterogeneous nucleation particles on the grain refining efficiency in an Mg–10 wt% Y cast alloy. J. Alloy. Compd. 488(1), 260–264 (2009)CrossRefGoogle Scholar
  7. 7.
    F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang, Revisiting the role of peritectics in grain refinement of Al alloys. Acta Mater. 61(1), 360–370 (2013)CrossRefGoogle Scholar
  8. 8.
    G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Metalcast. 1(1), 31–40 (2007)CrossRefGoogle Scholar
  9. 9.
    G.Q. Li, J.H. Zhang, R.Z. Wu, Y. Feng, S.J. Liu, X.J. Wang, Y.F. Jiao, Q. Yang, J. Meng, Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment. J. Mater. Sci. Technol. (2017).  https://doi.org/10.1016/j.jmst.2017.12.011 Google Scholar
  10. 10.
    X.H. Chen, Y.X. Geng, F.S. Pan, Microstructure, mechanical properties and electromagnetic shielding effectiveness of Mg–Y–Zr–Nd alloy. Rare Metal Mater. Eng. 45(1), 13–17 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Qiu, M.X. Zhang, The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg–10 wt% Y alloy. J. Alloys Compd. 586(5), 39–44 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Qiu, M.X. Zhang, P.M. Kelly, Crystallography of heterogeneous nucleation of Mg grains on Al2Y nucleation particles in an Mg–10 wt% Y alloy. Scr. Mater. 61(3), 312–315 (2009)CrossRefGoogle Scholar
  13. 13.
    P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM international, Materials Park, 1991), p. 1032Google Scholar
  14. 14.
    J.C. Dai, M.A. Easton, S.M. Zhu, G.H. Wu, W.J. Ding, Grain refinement of Mg–10Gd alloy by Al additions. J. Mater. Res. 27(21), 2790–2797 (2012)CrossRefGoogle Scholar
  15. 15.
    C.L. Wang, J.C. Dai, W.C. Liu, L. Zhang, G.H. Wu, Effect of Al additions on grain refinement and mechanical properties of Mg–Sm alloys. J. Alloys Compd. 620, 172–179 (2015)CrossRefGoogle Scholar
  16. 16.
    Z.T. Jiang, B. Jiang, Y. Zeng, J.H. Dai, F.S. Pan, Role of Al modification on the microstructure and mechanical properties of as-cast Mg–6Ce alloy. Mater. Sci. Eng. A 645(5), 57–64 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Atiya, M. Bamberger, A. Katsman, Microstructure and phase composition in a die cast Mg–Nd alloy. Int. J. Mater. Res. 103(10), 1277–1280 (2013)CrossRefGoogle Scholar
  18. 18.
    L. Wen, Z. Ji, X. Li, M. Xin, Effect of heat treatment on microstructure and mechanical properties of ZM6 alloy prepared by solid recycling process. J. Mater. Eng. Perform. 19(1), 107–111 (2010)CrossRefGoogle Scholar
  19. 19.
    J. Bai, Y.S. Sun, F. Xue, J. Qiang, Microstructures and creep properties of M–4Al–(1–4)La alloys produced by different casting techniques. Mater. Sci. Eng. A 552(9), 472–480 (2012)CrossRefGoogle Scholar
  20. 20.
    F. Yavari, S.G. Shabestari, Effect of cooling rate and Al content on solidification characteristics of AZ magnesium alloys using cooling curve thermal analysis. J. Therm. Anal. Calorim. 129, 1–8 (2017)CrossRefGoogle Scholar
  21. 21.
    J.C. Dai, M.A. Easton, M.X. Zhang, D. Qiu, X.Y. Xiong, W.C. Liu, G.H. Wu, Effects of cooling rate and solute content on the grain refinement of Mg–Gd–Y alloys by aluminum. Mater. Trans. A 45(10), 4665–4678 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.F. Jiao, J.H. Zhang, L.L. He, M.L. Zhang, F.C. Jiang, W. Wang, L.M. Han, L.J. Xu, R.Z. Wu, Al–RE intermetallic phase stability and effects on corrosion behavior in cold-chamber HPDC AE44 alloy. Adv. Eng. Mater. 18(1), 148–155 (2016)CrossRefGoogle Scholar
  23. 23.
    H.W. Chang, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang, The role of Al2Y in grain refinement in Mg–Al–Y alloy system. J. Magn. Alloys 1(2), 115–121 (2013)CrossRefGoogle Scholar
  24. 24.
    Y.F. Wu, W.B. Du, Y.N. Zhang, T.Y. Zou, Microstructure and creep property of as-cast Mg–6Al–xNd (x = 2,4,6) Alloys. Adv. Mater. Res. 146–147, 1702–1707 (2011)Google Scholar
  25. 25.
    D.H. Stjohn, P. Cao, M. Qian, M.A. Easton, A new analytical approach to reveal the mechanisms of grain refinement. Adv. Eng. Mater. 9(9), 739–746 (2007)CrossRefGoogle Scholar
  26. 26.
    S.G. Shabestari, M. Malekan, Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J. Alloys Compd. 492(1–2), 134–142 (2010)CrossRefGoogle Scholar
  27. 27.
    D.M. Stefanescu, Thermal analysis—theory and applications in metalcasting. Int. J. Metalcast. 9(1), 7–22 (2015)CrossRefGoogle Scholar
  28. 28.
    M.A. Easton, D.H. Stjohn, Improved prediction of the grain size of aluminum alloys that includes the effect of cooling rate. Mater. Sci. Eng. A 486(1), 8–13 (2008)CrossRefGoogle Scholar
  29. 29.
    A.L. Greer, A.M. Bunn, A. Tronche, D.J. Bristow, Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al–Ti–B. Acta Mater. 48(11), 2823–2835 (2000)CrossRefGoogle Scholar
  30. 30.
    T.E. Quested, A.L. Greer, The effect of the size distribution of inoculant particles on as-cast grain size in aluminium alloys. Acta Mater. 52(13), 3859–3868 (2004)CrossRefGoogle Scholar
  31. 31.
    Y. Ali, G. You, F. Pan, M.X. Zhang, Grain coarsening of cast magnesium alloys at high cooling rate: a new observation. Metall. Mater. Trans. A 48(1), 474–481 (2016)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2018

Authors and Affiliations

  • Lei Wang
    • 1
  • Yicheng Feng
    • 1
  • Erjun Guo
    • 1
  • Yang Yang
    • 2
  • Yanhong Chen
    • 1
  • Liping Wang
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinChina
  2. 2.Construction Engineering DepartmentEast College of HeilongjiangHarbinChina

Personalised recommendations