A Comparative Study of Graphite Growth in Cast Iron and in Analogous Systems

Abstract

Crystallization of graphite during the solidification and cooling of cast iron to room temperature has been the object of relentless, yet often inconclusive research. The importance of the subject cannot be underestimated, as graphite morphology is a major player in establishing the mechanical and physical properties of cast iron. Graphite crystallization is a complex phenomenon controlled by melt composition, local melt supersaturation, melt temperature and temperature gradient (cooling rate). All these are wide-ranging variables in the casting process. The results of a major effort to understand the complexity of graphite crystallization in cast iron is presented in this comparative study of crystal growth in materials with crystal morphologies similar to that of graphite. The analysis includes that of analogous materials such as eutectic aluminum–silicon and nickel carbon alloys, growth of other hexagonal or tetragonal crystals such as ice crystals and Al3Ti in aluminum–titanium alloys, growth of graphite through other processing routes such as chemical vapor deposition (a gas-to-solid transformation), and heat treatment of carbon steel (a solid-to-solid transformation), and the previous information on the crystallization of carbon in cast irons. An exhaustive analysis of the most widely accepted models for graphite growth is also presented.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52

References

  1. 1.

    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    E. Fraś, M. Górny, H. Lopez, Metall. Mater. Trans. A 38A, 385–395 (2007)

    Article  Google Scholar 

  3. 3.

    D.K. Bandyopadhyay, D.M. Stefanescu, I. Minkoff, S.K. Biswal, in Physical Metallurgy of Cast Iron IV, ed. by G. Ohira, T. Kusakawa, E. Niyama, Tokyo, Mat. Res. Soc. Proc., Pittsburgh, PA, 1989, p. 27

  4. 4.

    S. Amini, R. Abbaschian, Nucleation and growth kinetics of graphene layers from a molten phase. Carbon 51, 110–123 (2013)

    CAS  Article  Google Scholar 

  5. 5.

    D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, On the crystallization of graphite from liquid iron–carbon–silicon melts. Acta Mater. 107, 102–126 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    S.E. Franklin, R.A. Stark, Further use of secondary ion mass spectroscopy in the study of graphite morphology control in cast iron, in The Physical Metallurgy of Cast Iron, ed. by H. Fredriksson and M. Hillert, Stockholm, Mat. Res. Soc. Symposia Proc., North-Holland, NY, 1985, pp. 25–35

  7. 7.

    D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, Reexamination of crystal growth theory of graphite in iron-carbon alloys. Acta Mater. 139, 109–121 (2017)

    CAS  Article  Google Scholar 

  8. 8.

    W.C. O’Mara, Handbook of Semiconductor Silicon Technology. (William Andrew Inc., ISBN 0-8155-1237-6, 1990), pp. 349–352

  9. 9.

    A. Hellawell, The of growth and structure of eutectics with silicon and germanium. Prog. Mater Sci. 15, 3–78 (1970)

    Article  Google Scholar 

  10. 10.

    C.R. Loper, C.B. Kim, K.M. Htun, R.W. Heine, Analogous solidification in cast irons and aluminum–silicon alloys, in Recent Research on Cast Iron, ed. by H.D. Merchant (Gordon and Breach, New York, 1968), pp. 363–387

    Google Scholar 

  11. 11.

    D.A. Granger, R. Elliott, Aluminum–silicon alloys, in ASM Handbook, vol. 15, Casting, ed. by D.M. Stefanescu (ASM International, Novelty, 1988), pp. 159–168

    Google Scholar 

  12. 12.

    V.L. Davies, J.M. West, Factors affecting modification of aluminium-silicon eutectic. J. Inst. Met. 92, 175 (1963–64)

  13. 13.

    M.G. Day, Primary silicon spherulites in aluminium–silicon alloys. Nature 219, 1357–1358 (1968)

    CAS  Article  Google Scholar 

  14. 14.

    B. Lux, F. Mollard, I. Minkoff, On the formation of envelopes around graphite in cast iron, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1974), pp. 371–401

    Google Scholar 

  15. 15.

    H. Nakae, H. Shin, Similarity in solidification mode between Fe–C and Al–Si alloys. Int. J. Cast Met. Res. 11(5), 345–349 (1999)

    CAS  Article  Google Scholar 

  16. 16.

    H. Fredriksson, M. Hillert, N. Lange, The modification of aluminum–silicon alloys by sodium. J. Inst. Met. 101, 285–299 (1973)

    CAS  Google Scholar 

  17. 17.

    H. Fredriksson, U. Åkerlind, Solidification and Crystallization Processing in Metals and Alloys (Wiley, London, 2012), p. 486

    Google Scholar 

  18. 18.

    Y.T. Pei, J.Th.M. De Hosson, Producing functionally graded coatings by laser-powder cladding, JOM-e, 52(1) (2000). www.tms.org/pubs/journals/JOM/0001/Pei/Pei-0001.html

  19. 19.

    K. Fujiwara, K. Maeda, N. Usami, K. Nakajima, Growth mechanism of si-faceted dendrites. Phys. Rev. Lett. 101, 055503 (2008)

    CAS  Article  Google Scholar 

  20. 20.

    E. Tillová, M. Chalupová, L. Hurtalová, Evolution of phases in a recycled Al–Si cast alloy during solution treatment, in Scanning Electron Microscopy, ed. by V. Kazmiruk (InTech, Chapters published March 09, 2012). https://doi.org/10.5772/34542

    Google Scholar 

  21. 21.

    D.D. Saratovkin, Dendritic Crystallization (Consultants Bureau, New York, 1959)

    Google Scholar 

  22. 22.

    D.D. Double, A. Hellawell, The structure of flake graphite in Ni–C eutectic alloy. Acta Metall. 17, 1071–1083 (1969)

    CAS  Article  Google Scholar 

  23. 23.

    I. Minkoff, I. Einbinder, Official Exchange Paper—Israel, International Foundry Congress (1963) pp. 139–143

  24. 24.

    B. Lux, I. Minkoff, F. Mollard, E. Thury, Branching of graphite crystals growing from metallic solution, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1975), pp. 495–508

    Google Scholar 

  25. 25.

    J.P. Sadocha, J.E. Gruzleski, The mechanism of graphite spheroid formation in pure Fe–C–Si alloys, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1975), pp. 443–459

    Google Scholar 

  26. 26.

    V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, ISBN 9780198518945, 1999)

  27. 27.

    R. Hooke, Micrographia (Council of the Royal Society, 1664)

  28. 28.

    http://www.snowcrystals.com/science/science.html

  29. 29.

    U. Nakaya, Snow Crystals: Natural and Artificial (Cambridge University Press, Cambridge, 1954)

    Google Scholar 

  30. 30.

    B.J. Mason, Ice, in The Art and Science of Growing Crystals, ed. by J.J. Gilman (Wiley, New York, 1963)

    Google Scholar 

  31. 31.

    C. Magono, C.W. Lee, Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Jpn. Ser. VII II(4), 321–335 (1966)

    Google Scholar 

  32. 32.

    K.G. Libbrecht, http://www.snowcrystals.com

  33. 33.

    J.W. Barrett, H. Garcke, R. Nürnberg, Numerical computations of faceted pattern formation in snow crystal growth. Phys. Rev. E 86, 011604 (2012)

    Article  Google Scholar 

  34. 34.

    D.H. St, L.M.Hogan John, Metallography and growth crystallography of Al3Ti in Al–Ti alloys up to 5 wt% Ti. J. Cryst. Growth 46, 387–398 (1979)

    Article  Google Scholar 

  35. 35.

    V.N. Kvasnitsa, V.G. Yatsenko, J.A. Jaszczak, Disclinations in unusual graphite crystals from anorthosites of Ukraine. Can. Mineral. 37, 951–960 (1999)

    CAS  Google Scholar 

  36. 36.

    D.D. Double, A. Hellawell, Cone-helix growth forms of graphite. Acta Metall. 22, 481–487 (1974). https://doi.org/10.1016/0001-6160(74)90101-1

    CAS  Article  Google Scholar 

  37. 37.

    S. Amelinckx, W. Luyten, T. Krekels, G. Van Tendeloo, J. Van Landuit, Conical, helically wound, graphite whiskers: a limiting member of the “fullerenes”. J. Cryst. Growth 121, 543–558 (1992)

    CAS  Article  Google Scholar 

  38. 38.

    F.C. Frank, The influence of dislocations on crystal growth. Disc. Faraday Soc. 5, 48–54 (1949)

    Article  Google Scholar 

  39. 39.

    J.A. Jaszczaka, G.W. Robinson, S. Dimovskic, Y. Gogotsic, Naturally occurring graphite cones. Carbon 41, 2085–2092 (2003)

    Article  Google Scholar 

  40. 40.

    D.D. Li, R.X. Tan, J.X. Gao, B.Q. Wei, Z.Q. Fan, Q.Z. Huang, K.J. He, Comparison of pyrolytic graphite spheres from propylene with spheroidal graphite nodules in steel. Carbon 111, 428–438 (2017)

    CAS  Article  Google Scholar 

  41. 41.

    H. Daniels, R. Brydson, A. Brown, B. Rand, Quantitative valence plasmon mapping in the TEM: viewing physical properties at the nanoscale. Ultramicroscopy 96(3–4), 547–558 (2003). https://doi.org/10.1016/s0304-3991(03)00115-3

    CAS  Article  Google Scholar 

  42. 42.

    S.H. Yoon, S.G. Lim, S.H. Hong, W.M. Qiao, D.D. Whitehurst, I. Mochida, B. An, K. Yokogawa, A conceptual model for the structure of catalytically grown carbon nano-fibers. Carbon 43, 1828–1838 (2005)

    CAS  Article  Google Scholar 

  43. 43.

    K. Roesch, Recent developments in the area of malleable cast iron. Stahl Eisen 24, 1747 (1957)

    Google Scholar 

  44. 44.

    K. He, H.R. Daniels, A. Brown, R. Brydson, D.V. Edmonds, An electron microscopic study of spheroidal graphite nodules formed in a medium-carbon steel by annealing. Acta Mater. 55, 2919–2927 (2007)

    CAS  Article  Google Scholar 

  45. 45.

    B. Miao, D.O. Northwood, W. Bian, K. Fang, M. Fan, Structure and growth of platelets in graphite spherulites in cast iron. J. Mater. Sci. 29, 255–261 (1994). https://doi.org/10.1007/BF00356601

    CAS  Article  Google Scholar 

  46. 46.

    K. He, A. Brown, R. Brydson, D. Edmonds, Analytical electron microscope study of the dissolution of the Fe3C iron carbide phase (cementite) during a graphitisation anneal of carbon steel. J. Mater. Sci. 41(16), 5235–5241 (2006)

    CAS  Article  Google Scholar 

  47. 47.

    E.V. Zakhartchenko, E.P. Akimov, C.R. Loper, Kish graphite in gray cast iron. AFS Trans. 87, 471–476 (1979)

    Google Scholar 

  48. 48.

    D.M. Stefanescu, R. Huff, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, On the crystallization of compacted and chunky graphite from liquid multicomponent iron–carbon–silicon based melts. Metall. Mater. Trans. 47, 4012–4023 (2016)

    CAS  Article  Google Scholar 

  49. 49.

    K.M. Fang, G.C. Wang, X. Wang, L. Huang, G.D. Deng, The microstructure and metamorphic regularity of graphite in cast iron, in Science and Processing of Cast Iron VIII, ed. by Y.X. Li, H.F. Shen, Q.G. Xu, Z.Q. Han (Tsinghua Univ. Press, Beijing, 2006), pp. 181–187

    Google Scholar 

  50. 50.

    T. Hara, T. Kitagawa, K. Kuroki, S. Saikawa, K. Terayama, S. Ikeno, K. Matsuda, Morphologies of some graphite in ductile iron. Mater. Trans. JIMM 55(9), 1500–1505 (2014)

    CAS  Article  Google Scholar 

  51. 51.

    B. Lux, On the theory of nodular graphite formation in cast iron. Cast Met. Res. J. March 8, 25–28 (1972)

    Google Scholar 

  52. 52.

    B. Lux, Discussion on transition from undercooled to flake graphite, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1975), pp. 289–292

    Google Scholar 

  53. 53.

    B. Dhindaw, J.D. Verhoeven, Nodular graphite. Formation in vacuum melted high purity Fe–C–Si alloys. Metall. Trans. A 11A, 1049–1057 (1980)

    CAS  Article  Google Scholar 

  54. 54.

    M.J. Lalich, J.R. Hitchings, Characterization of inclusions as nuclei for spheroidal graphite in ductile cast iron. AFS Trans. 84, 653–664 (1976)

    CAS  Google Scholar 

  55. 55.

    K.M. Fang, Atlas of the Morphology and Microstructure of the Graphite in Cast Iron (Science Publ. Co. of China, 2000)

  56. 56.

    M. Hamasumi, A newly observed pattern of imperfect graphite spherulite in nodular iron. Trans. JIM 6, 234–239 (1965)

    CAS  Article  Google Scholar 

  57. 57.

    G.R. Purdy, M. Audier, Electron microscopical observations of graphite in cast irons, in The Physical Metallurgy of Cast Iron, ed. by H. Fredriksson, M. Hillert Stockholm, Mat. Res. Soc. Symposia Proc., North-Holland, NY, 1985, pp. 13–23

  58. 58.

    D. Ugarte, Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992)

    CAS  Article  Google Scholar 

  59. 59.

    D.D. Double, A. Hellawell, Growth structure of various forms of graphite, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing Co., St Saphorin, 1975), pp. 509–528

    Google Scholar 

  60. 60.

    J.P. Monchoux, C. Verdu, G. Thollet, R. Fougères, A. Reynaud, Morphological changes of graphite spheroids during heat treatment of ductile cast irons. Acta Mater. 49, 4355–4362 (2001)

    CAS  Article  Google Scholar 

  61. 61.

    J. Qing, V.L. Richards, D.C. Van Aken, Growth stages and hexagonal-rhombohedral structural arrangements in spheroidal graphite observed in ductile iron. Carbon 116, 456–469 (2017)

    CAS  Article  Google Scholar 

  62. 62.

    K. Theuwissen, J. Lacaze, L. Laffont, Structure of graphite precipitates in cast iron. Carbon 96, 1120–11286 (2016)

    CAS  Article  Google Scholar 

  63. 63.

    D.D. Li, R.X. Tan, J.X. Gao, B.Q. Wei, Z.Q. Fan, Q.Z. Huang, K.J. He, Comparison of pyrolytic graphite spheres from propylene with spheroidal graphite nodules in steel. Carbon 111, 428–438 (2017)

    CAS  Article  Google Scholar 

  64. 64.

    H. Itofuji, H. Uchikawa, Trans. AFS 98, 429–448 (1990)

    CAS  Google Scholar 

  65. 65.

    J.F. Ellis, C.K. Donoho, Magnesium content and graphite forms in cast iron. AFS Trans. 66, 203–209 (1958)

    CAS  Google Scholar 

  66. 66.

    P.K. Basutkar, C.S. Park, R.E. Miller, C.R. Loper, Formation of spiky graphite in high magnesium ductile iron castings. AFS Trans. 81, 180–184 (1973)

    CAS  Google Scholar 

  67. 67.

    E.N. Pan, C.N. Lin, H.S. Chiou, Effects of lead and solidification conditions on graphite structure of heavy-section DI. AFS Trans. 103, 265–273 (1995)

    CAS  Google Scholar 

  68. 68.

    R.K. Buhr, The effects of Pb, Sb, Bi and Ce on microstructure of heavy section nodular iron castings. AFS Trans. 79, 247–252 (1971)

    CAS  Google Scholar 

  69. 69.

    A. Javaid, C.R. Loper, Production of heavy-section ductile cast iron. AFS Trans. 103, 135–150 (1995)

    CAS  Google Scholar 

  70. 70.

    B. Tonn, J. Lacaze, S. Duwe, Degenerated graphite growth in ductile iron, in: Science and Processing of Cast Iron, Jönköping, Sweden, 2017

  71. 71.

    I. Minkoff, The Physical Metallurgy of Cast Iron (Wiley, New York, 1983)

    Google Scholar 

  72. 72.

    R. Elliott, Eutectic Solidification Processing (Butterworth, London, 1983)

    Google Scholar 

  73. 73.

    D.M. Stefanescu, Cast Iron, in ASM Handbook, vol. 15, Casting, ed. by D.M. Stefanescu (ASM International, Metals Park, 1988), pp. 168–181

    Google Scholar 

  74. 74.

    C.A. van den Velde, A new approach to the solidification of ductile iron, in The Ductile Iron Society’s 1998 Keith D. Millis World Symposium on Ductile Iron, Hilton Head, S. Carolina 1998, pp. 143–187

  75. 75.

    D.M. Stefanescu, Science and Engineering of Casting Solidification, 3rd edn. (Springer, Berlin, 2015), pp. 454–479

    Google Scholar 

  76. 76.

    J. Lacaze, J. Bourdie, M.J. Castro-Roman, A 2-D nucleation-growth model of spheroidal graphite. Acta Mater. 34, 230–235 (2017)

    Article  Google Scholar 

  77. 77.

    M.B. Haanstra, W.F. Knippenber, G. Verspui, in Proceedings of the 5th European Congress on Electron Microscopy, Manchester, Institute of Physics, 1972, p. 214

  78. 78.

    I. Minkoff, The spherulitic growth in graphite, in The Physical Metallurgy of Cast Iron, ed. by H. Fredriksson, M. Hillert, Stockholm, Mat. Res. Soc. Symposia Proc., North-Holland, NY, 1985, pp. 37–45

  79. 79.

    P.C. Liu, C.R. Loper, T. Kimura, H.K. Park, Observations on the graphite morphology in cast iron. AFS Trans. 88, 97–118 (1980)

    CAS  Google Scholar 

  80. 80.

    P.C. Liu, C.L. Li, D.H. Wu, C.R. Loper, SEM study of chunky graphite in heavy section ductile iron. AFS Trans. 91, 119–126 (1983)

    CAS  Google Scholar 

  81. 81.

    A.N. Roviglione, J.D. Hermida, From flake to nodular: a new theory of morphological modification in gray cast iron. Metall. Mater. Trans. 35B, 313–330 (2004)

    CAS  Article  Google Scholar 

  82. 82.

    W.L. Guesser, C.S. Cabezas, L.C. Guedes, A.M. Zanatta, High temperature strength of cast irons for cylinder heads, in Science and Processing of Cast Iron, Jönköping, Sweden, 2017

  83. 83.

    E. Moumeni, N.S. Tiedje, A. Horsewell, J.H Hattel, A TEM Study on the Microstructure of Fine Flaky Graphite, in 52nd International Foundry Conference, Portoroz, Slovenia, 2012

  84. 84.

    J. Qing, V.L. Richards, D.C. Van Aken, Examination of austenite solidification and spheroidal graphite growth in Ni–Fe–C alloys, in Advances in the Science and Engineering of Casting Solidification, ed. by L. Nastac et al. (TMS, Wiley, Hoboken, New Jersey, 2015), pp. 277–285

    Google Scholar 

  85. 85.

    K. Yamane, H. Yasuda, A. Sugiyama, T. Nagira, M. Yoshiya, K. Morishita, K. Uesugi, A. Takeuchi, Y. Suzuki, Influence of Mg on solidification of hypereutectic cast iron: x-ray radiography study. Metall. Mater. Trans. A 46A, 4937–4946 (2015)

    Article  Google Scholar 

  86. 86.

    F.C. Frank, in Growth and Perfection of Crystals,ed. by R.H. Doremus, B.W. Roberts, D. Turnbull (Wiley, New York, 1958)

  87. 87.

    R.H. McSwain, C.E. Bates, Surface and interfacial energy relationships controlling graphite formation in cast iron, in The Metallurgy of Cast Iron, ed. by B. Lux, I. Minkoff, F. Mollard (Georgi Publishing, St. Saphorin, 1975), pp. 423–442

    Google Scholar 

  88. 88.

    S.V. Subramanian, D.A.R. Kay, G.R. Purdy, Graphite morphology control in cast iron, in The Physical Metallurgy of Cast Iron, ed. by H. Fredriksson, M. Hillert, Stockholm, Mat. Res. Soc. Symposia Proc., North-Holland, NY, 1985, pp.47–56

  89. 89.

    G.H. Gilmer, in Modeling of Casting and Welding Processes, ed. by H.D. Brody, D. Apelian, (Metallurgical Soc. of AIME, 1981), pp. 385–401, ISBN-10: 0895203804

  90. 90.

    W.C. Johnson, H.B. Smartt, The role of interphase boundary adsorption in the formation of spheroidal graphite in cast iron. Metall. Trans. A 8A, 553–565 (1977)

    CAS  Article  Google Scholar 

  91. 91.

    W.C. Johnson, H.B. Smartt, in Solidification and Casting of Metals (The Metal Society, 1979), Book No. 192 p. 129

  92. 92.

    J.S. Park, J.D. Verhoeven, Transitions between Type A flake, Type D flake, and coral graphite eutectic structures in cast irons. Metall. Mater. Trans. A 27A, 2740–2753 (1996)

    CAS  Article  Google Scholar 

  93. 93.

    H.M. Muhmond, H. Fredriksson, Relationship between the trace elements and graphite growth morphologies in cast iron. Metall. Mater. Trans. 45A, 6187–6199 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. M. Stefanescu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stefanescu, D.M., Alonso, G., Larrañaga, P. et al. A Comparative Study of Graphite Growth in Cast Iron and in Analogous Systems. Inter Metalcast 12, 722–752 (2018). https://doi.org/10.1007/s40962-017-0204-1

Download citation

Keywords

  • cast iron
  • graphite morphology
  • foliated dendrites
  • lamellar graphite
  • compacted graphite
  • chunky graphite
  • spheroidal graphite
  • graphite growth