Skip to main content

Effect of Silicon and Microstructure on Spheroidal Graphite Cast Iron Thermal Conductivity at Elevated Temperatures


Spheroidal graphite cast irons are materials that exhibit many possible microstructures and compositions, which in turn create a multitude of possible property combinations. Chemical composition and microstructure are some of the biggest influences on these material properties. This paper concentrates on the effect of silicon alloying in the range of 1–4% and varying ferrite–pearlite microstructures on thermal conductivity of spheroidal graphite cast irons from room temperature up to 400 °C. Results show that increasing silicon alloying levels decreases thermal conductivity, while a decreasing trend is also seen with increasing pearlite fraction, as composition and morphology act as hindrance to thermal conduction. Temperature dependence shows as an initial increase in thermal conductivity and a peak near 200–300 °C for the studied alloys. Based on the results, a model estimating thermal conductivity with silicon alloying, pearlite fraction and temperature is made to aid in the estimation of material properties for design use.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. J. Olofsson, I.L. Svensson, Mater. Des. 34, 494–500 (2012)

    Article  Google Scholar 

  2. J. Olofsson, I.L. Svensson, Mater. Des. 43, 264–271 (2013)

    Article  Google Scholar 

  3. R. Cenni, M. Cova, G. Bertuzzi, Proc. Inst. Mech. Eng. Part C. 2016 03/29; 2017/01:0954406216640807

  4. R.K. Williams, R.S. Graves, F.J. Weaver, D.W. Yarbrough, J. Appl. Phys. 62(7), 2778–2783 (1987)

    Article  Google Scholar 

  5. W.F. Gale, T.C. Totemeier (eds.), Smithells Metals Reference Book, 8th edn. (Elsevier, New York, 2004)

    Google Scholar 

  6. R.B. Gundlach, Giesserei-Praxis. 1–2, 1–25 (1985)

  7. E. Nechtelberger (ed.), The Properties of Cast Iron up to 500 °C (Verlag Schiele & Schön, Berlin, 1977)

    Google Scholar 

  8. M. Sasaki, K. Taniguchi, C. Yoshida, T. Sakamoto, Trs. Jpn. Foundrym. Soc. 4, 37 (1985)

    Google Scholar 

  9. T. Okamoto, A. Kagawa, K. Kamei, H. Matsumoto, J. Trans. Jpn. Foundrym. Soc. 4, 32–36 (1985)

    Google Scholar 

  10. D. Holmgren, A. Diószegi, I.L. Svensson, Int. J. Cast Met. Res. 20(1), 30–40 (2007)

    Article  Google Scholar 

  11. D.M. Holmgren, A. Diószegi, I.L. Svensson, Int. J. Cast Met. Res. 19(6), 303–313 (2006)

    Article  Google Scholar 

  12. D. Holmgren, R. Källbom, I.L. Svensson, Metall. Mater. Trans. A. 38(2), 268–275 (2007)

    Article  Google Scholar 

  13. D. Holmgren, A. Dioszegi, I.L. Svensson, Tsinghua Sci. Technol. 13(2), 170–176 (2008)

    Article  Google Scholar 

  14. J.K. Chen, S.F. Chen, InTech. (2011)

  15. D. Holmgren, I.L. Svensson, Int. J. Cast Met. Res. 18(6), 321–330 (2005)

    Article  Google Scholar 

  16. J. Helsing, G. Grimvall, J. Appl. Phys. 70(3), 1198–1206 (1991)

    Article  Google Scholar 

  17. H. Kempers, Giesserei 53(1), 15–18 (1966)

    Google Scholar 

  18. R. Larker, China Foundry. 4(12), 343–351 (2009)

    Google Scholar 

  19. H. Löblich, W. Stets, G. Gassner, P. Schumacher, Giesserei. 3, 28–32 (2012)

    Google Scholar 

  20. W. Stets, H. Löblich, G. Gassner, P. Schumacher, Int. J. Metalcast. 8(2), 35–40 (2014)

    Article  Google Scholar 

  21. C. Cingi, V. Rauta, E. Suikkanen, J. Orkas, Adv. Mater. Res. 538–541, 2047–2052 (2012)

    Article  Google Scholar 

  22. M. Gustavsson, E. Karawacki, S.E. Gustafsson, Rev. Sci. Instrum. 65(12), 3856–3859 (1994)

    Article  Google Scholar 

  23. Y. He, Thermochim. Acta 436, 122 (2005)

    Article  Google Scholar 

  24. V. Rauta, C. Cingi, J. Orkas, Int. J. Metalcast. 10(2), 157–171 (2016)

    Article  Google Scholar 

  25. D. Holmgren, Int. J. Cast Met. Res. 18(6), 331–345 (2005)

    Article  Google Scholar 

  26. J.W. Donaldson, Foundry Trade J. 63, 141–144 (1940)

    Google Scholar 

  27. M.J. Peet, H.S. Hasan, H.K.D.H. Bhadeshia, Int. J. Heat Mass Transf. 54(11–12), 2602–2608 (2011)

    Article  Google Scholar 

Download references


This study was made as part of the DIMECC (Digital, Internet, Materials & Engineering Co-Creation) project ‘Breakthrough steels and applications: Novel Cast Materials.’ Authors would like to thank Aalto University School of Engineering, Department of Mechanical Engineering for the facilities to conduct experiments. Funding was provided by Tekes.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kalle Jalava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 346 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jalava, K., Soivio, K., Laine, J. et al. Effect of Silicon and Microstructure on Spheroidal Graphite Cast Iron Thermal Conductivity at Elevated Temperatures. Inter Metalcast 12, 480–486 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • cast iron
  • ductile iron
  • spheroidal graphite
  • thermal conductivity
  • elevated temperatures