Advertisement

International Journal of Metalcasting

, Volume 12, Issue 1, pp 79–88 | Cite as

Experimental Investigations on the Influence of the Thermal Conditions During Composite Casting on the Microstructure of Cu–Al Bilayer Compounds

  • Manuel PintoreEmail author
  • Oleksiy Starykov
  • Tim Mittler
  • Wolfram Volk
  • Babette Tonn
Article

Abstract

Metallic material compounds are of technical interest as they allow the combining of specific properties of different materials into one component. In particular, compounds of copper (Cu) and aluminum (Al) are a current object of research. There are different fabrication processes, such as roll cladding or overlay welding. In recent years, a variety of alternative bonding methods were investigated, among other composite casting processes. A notable problem of Cu–Al composites is the formation of hard and brittle interface layers which reduce the mechanical properties of the compounds. Therefore, the reduction of these layers is one of the objectives of the development of new fabrication processes to realize suitable industrial applications. In this study, gravity casting experiments are carried out to produce Cu–Al bilayer composites and to determine the influence of the thermal process parameters on their properties. Two experimental setups using sand molds are developed, and casting experiments with varying thermal parameters are carried out. Specimens of the cast composites are extracted, metallographic examined and the hardness profile is determined. Hence, it is possible to identify the influence of thermal parameters on microstructure and hardness of cast Cu–Al bilayer composites.

Keywords

metallic bilayer composites copper aluminum composite casting microstructure 

Notes

Acknowledgements

The project “Casting and characterization of Cu–Al-bilayer composites” with the conveyor No. VO-1487/14-1 is funded by the German Research Foundation (DFG). The authors gratefully acknowledge the financial support from the DFG.

References

  1. 1.
    Y.J. Su, X.H. Liu, H.Y. Huang, C.J. Wu, X.F. Liu, J.X. Xie, Metall. Mater. Trans. B 42B, 104–113 (2011)CrossRefGoogle Scholar
  2. 2.
    Y.J. Su, X.H. Liu, H.Y. Huang, X.F. Liu, J.X. Xie, Metall. Mater. Trans. A 42A, 4088–4099 (2011)CrossRefGoogle Scholar
  3. 3.
    W.B. Lee, K.S. Bang, S.B. Jung, J. Alloys Compd. 390, 212–219 (2005)CrossRefGoogle Scholar
  4. 4.
    H. Liang, Z. Xue, C. Wu, Q. Liu, Y. Wu, Acta Metall. Sin. (Engl. Lett.) 23, 206–214 (2010)Google Scholar
  5. 5.
    J. Xie, C. Wu, X. Liu, X. Liu, Mater. Sci. Forum 539–543, 956–961 (2007)CrossRefGoogle Scholar
  6. 6.
    C.Y. Chen, W.S. Hwang, Mater. Trans. 48, 1938–1947 (2007)CrossRefGoogle Scholar
  7. 7.
    W. Xie, T. Yamaguchi, K. Nishio, J. Jpn. Inst. Met. 75, 166–172 (2011)CrossRefGoogle Scholar
  8. 8.
    W. Schillinger, S. Krebs, F. Gärtner, Metall 67, 498–499 (2013)Google Scholar
  9. 9.
    J. Standfuß, V. Fux, S. Schulze, Fügen von Al-Cu-Mischverbunden. (Fraunhofer IWS, 2010). http://www.iws.fraunhofer.de/content/dam/iws/de/documents/publikationen/infoblaetter/300-4_al-cu-verbindungen_de.pdf. Accessed 21 Sept 2016
  10. 10.
    C. Nerl, M. Wimmer, H. Hoffmann, E. Kaschnitz, F. Langbein, W. Volk, J. Mater. Proess. Technol. 214, 1445–1455 (2014)CrossRefGoogle Scholar
  11. 11.
    G.R. Zare, M. Divandari, H. Arabi, Mater. Sci. Technol. 29, 190–196 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Ißleib, A. Friedel, I. Lubojanski, Gießerei-Praxis 15/16, 286–289 (1995)Google Scholar
  13. 13.
    J.L. Murray, Int. Met. Rev. 30, 211–234 (1985)CrossRefGoogle Scholar
  14. 14.
    N. Ponweiser, C.L. Lengauer, K.W. Richter, Intermetallics 19, 1737–1746 (2011)CrossRefGoogle Scholar

Copyright information

© American Foundry Society 2017

Authors and Affiliations

  1. 1.Chair of Metal Forming and CastingTechnical University of MunichGarchingGermany
  2. 2.Department of Foundry Technology, Institute of MetallurgyClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations