Skip to main content

Hypoeutectic Aluminum–Silicon Alloy Development for GMAW-Based 3-D Printing Using Wedge Castings

Abstract

Alloy development can simplify low-cost gas metal arc weld (GMAW)-based 3-D printing by making it easier to print quality parts with minimal metallurgical or welding experience. Previous work found good properties in aluminum alloys, particularly in the aluminum–silicon 4943 (Al–5.5%Si–0.4%Mg) and 4047 (Al–11.6%Si) alloys. These alloys were easy to print, but could benefit from alloying to increase ductility and to minimize or redistribute porosity. The purpose of this study was to modify 4943 and 4047 alloys and rapidly screen their performance for use as feedstock for improved 3-D printability. The 4047- and 4943-based alloys were modified with additions of magnesium, strontium, titanium boride, and combinations thereof. Wedge-shaped castings were used to efficiently screen alloying additions over the same ranges of solidification rates as those observed in GMAW-based 3-D printing. The alloying additions were most effective at modifying the high-silicon 4047 alloy, whereas no change in microstructure was observed in the low-silicon 4943 alloy. Strontium was an effective modifier of the high-silicon alloy. Titanium boride was not observed to have a grain-refining effect on aluminum dendrites on its own, although the combination of strontium and titanium boride produced the most refined eutectic structure in the high-silicon alloy. Future work should evaluate the singular effects of strontium, titanium boride, and the combination of strontium and titanium boride additions in weld-based 3-D printing.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

References

  1. L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, R.B. Wicker, Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. J. Mater. Res. Technol. 1(1), 42–54 (2012)

    Article  Google Scholar 

  2. T. Wohlers, T. Caffrey, Wohlers Report 2014 Annual Worldwide Progress Report (Wohlers Associates, Inc., Fort Collins, CO, 2014)

    Google Scholar 

  3. W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)

    Article  Google Scholar 

  4. T.J. Horn, O.L.A. Harrysson, Overview of current additive manufacturing technologies and selected applications. Sci. Prog. 95(3), 255–282 (2012)

    Article  Google Scholar 

  5. T. Wohlers, T. Caffrey, Wohlers Report 2015 Annual Worldwide Progress Report (Wohlers Associates, Inc., Fort Collins, CO, 2015)

    Google Scholar 

  6. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 28(1), 1–14 (2012)

    Article  Google Scholar 

  7. K. M. B. Taminger, R.A. Hafley, Electron beam freeform fabrication: a rapid metal deposition process, in Presented at the 3rd annual automotive composites conference, Troy, MI: Society of Plastics Engineers, Inc (2003)

  8. J.P. Kruth, Material incress manufacturing by rapid prototyping techniques. CIRP Ann. Manuf. Technol. 40(2), 603–614 (1991)

    Article  Google Scholar 

  9. J. Peels, Metal 3D printing: From lab to fab. Inside 3DP, (2014), www.inside3dp.com/metal-3d-pinting-lab-fab/. Last Accessed 22 Mar 2016

  10. G.C. Anzalone, C. Zhang, B. Wijnen, P.G. Sanders, J.M. Pearce, A low-cost open-source metal 3-D printer. IEEE Access 1, 803–810 (2013)

    Article  Google Scholar 

  11. A. Pinar, B. Wijnen, G.C. Anzalone, T.C. Havens, P.G. Sanders, J.M. Pearce, Low-cost open-source voltage and current monitor for gas metal arc weld 3D printing. J. Sens. 876714, 2015 (2015). doi:10.1155/2015/876714

    Google Scholar 

  12. Y. Nilsiam, A. Haselhuhn, B. Wijnen, P. Sanders, J.M. Pearce, Integrated voltage–current monitoring and control of gas metal arc weld magnetic ball-jointed open source 3-D printer. Machines 3(4), 339–351 (2015)

    Article  Google Scholar 

  13. B. Wijnen, G.C. Anzalone, A.S. Haselhuhn, P.G. Sanders, J.M. Pearce, Free and open-source control software for 3-D motion and processing. J. Open Res. Softw. 4(1), 4:e2 (2016). doi:10.5334/jors.78

    Google Scholar 

  14. Sciaky, Inc. Advantages of wire AM vs. powder AM, (2016), http://www.sciaky.com/additive-manufacturing/wire-am-vs-powder-am. Last Accessed 22 Mar 2016

  15. A. Ujiie, U.S. Patent No. 3,665,143. (Published May 23, 1972). Washington, DC: U.S. Patent and Trademark Office (1972)

  16. H.T. Brandi, H. Luckow, U.S. Patent No. 3,985,995, (Published October 12, 1976). Washington, DC: U.S. Patent and Trademark Office (1976)

  17. D. Ding, Z. Pan, D. Cuiuri, H. Li, A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot. Comput. Integr. Manuf. 31, 101–110 (2015)

    Article  Google Scholar 

  18. J.F. Lancaster, Metallurgy of Welding (Chapman & Hall, London, 1993)

    Google Scholar 

  19. A.S. Haselhuhn, E.J. Gooding, A.G. Glover, G.C. Anzalone, B. Wijnen, P.G. Sanders, J.M. Pearce, Substrate release mechanisms for gas metal arc weld 3D aluminum metal printing. 3D Print. Addit. Manuf. 1(4), 204–209 (2014)

    Article  Google Scholar 

  20. A.S. Haselhuhn, B. Wijnen, G.C. Anzalone, P.G. Sanders, J.M. Pearce, In situ formation of substrate release mechanisms for gas metal arc weld metal 3-D printing. J. Mater. Process. Technol. 226, 50–59 (2015)

    Article  Google Scholar 

  21. A.S. Haselhuhn, M.W. Buhr, B. Wijnen, P.G. Sanders, J.M. Pearce, Structure-property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D printing. Mater. Sci. Eng. A 673, 511–523 (2016)

    Article  Google Scholar 

  22. A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al–Si Alloys. Mater. Sci. Eng. A 413–414, 243–248 (2005)

    Article  Google Scholar 

  23. A. Pacz, U.S. Patent No. 1387900A. (Published August 16, 1921). Washington, DC: U.S. Patent and Trademark Office (1920)

  24. S.C. Flood, J.D. Hunt, Modification of Al–Si eutectic alloys with Na. Met. Sci. 15(7), 287–294 (1981)

    Article  Google Scholar 

  25. C.E. Cross, D.L. Olson, Modification of eutectic weld metal microstructure. Weld. J. 61, 381s–387s (1982)

    Google Scholar 

  26. S.-Z. Lu, A. Hellawell, The mechanism of silicon modification in aluminum–silicon alloys: impurity induced twinning. Metall. Trans. A 18(10), 1721–1733 (1987)

    Article  Google Scholar 

  27. Liu Qiyang, Li Qingchun, Liu Qifu, Modification of Al–Si alloys with sodium. Acta Metall. Mater. 39(11), 2497–2502 (1991)

    Article  Google Scholar 

  28. S.-Z. Lu, A. Hellawell, Modification of Al–Si alloys: microstructure, thermal analysis, and mechanisms. JOM 47(2), 38–40 (1995)

    Article  Google Scholar 

  29. H. Liao, G. Dong, G. Sun, Investigation on influence of sodium- or strontium-modification on corrosion-resistance of Al–11.7%Si alloy. J. Mater. Sci. 42(13), 5175–5181 (2007)

    Article  Google Scholar 

  30. L. Lu, K. Nogita, A.K. Dahle, Combining Sr and Na additions in hypoeutectic Al–Si foundry alloys. Mater. Sci. Eng. A 399(1–2), 244–253 (2005)

    Article  Google Scholar 

  31. N.S. Tiedje, J.A. Taylor, M.A. Easton, Feeding and distribution of porosity in cast Al–Si alloys as function of alloy composition and modification. Metall. Mater. Trans. A 43(12), 4846–4858 (2012)

    Article  Google Scholar 

  32. S.-S. Shin, E.-S. Kim, G.-Y. Yeom, J.-C. Lee, Modification effect of Sr on the microstructures and mechanical properties of Al–10.5Si–2.0Cu recycled alloy for die casting. Mater. Sci. Eng. A 532, 151–157 (2012)

    Article  Google Scholar 

  33. C.M. Dinnis, A.K. Dahle, J.A. Taylor, M.O. Otte, The influence of strontium on porosity formation in Al–Si alloys. Metall. Mater. Trans. A. 35(11), 3531–3541 (2004)

    Article  Google Scholar 

  34. P. Srirangam, M.J. Kramer, S. Shankar, Effect of strontium on liquid structure of Al–Si hypoeutectic alloys using high-energy X-ray diffraction. Acta Mater. 59(2), 503–513 (2011)

    Article  Google Scholar 

  35. P. Srirangam, S. Chattopadhyay, A. Bhattacharya, S. Nag, J. Kaduk, S. Shankar, T. Shibata, Probing the local atomic structure of Sr-modified Al–Si alloys. Acta Mater. 65, 185–193 (2014)

    Article  Google Scholar 

  36. D.L. Zhang, B. Cantor, Heterogeneous nucleation of solidification of Si by solid AI in hypoeutectic Al-Si alloy. Metall. Trans. A 24(5), 1195–1204 (1993)

    Article  Google Scholar 

  37. N. Fatahalla, M. Hafiz, M. Abdulkhalek, Effect of microstructure on the mechanical properties and fracture of commercial hypoeutectic Al–Si alloy modified with Na, Sb and Sr. J. Mater. Sci. 34(14), 3555–3564 (1999)

    Article  Google Scholar 

  38. M. Zarif, B. McKay, J. Li, P. Schumacher, Study of the effect of strontium (Sr) on the nucleation of eutectic silicon (Si) in high purity hypoeutectic Al–5Si alloys. BHM Berg-Huettenmaenn. Monatsh. 155(11), 506–511 (2010)

    Article  Google Scholar 

  39. M. Zarif, B. Mckay, P. Schumacher, Study of heterogeneous nucleation of eutectic Si in high-purity Al–Si alloys with Sr addition. Metall. Mater. Trans. A 42(6), 1684–1691 (2011)

    Article  Google Scholar 

  40. L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Characteristics of α-dendritic and eutectic structures in Sr-treated Al–Si casting alloys. J. Mater. Sci. 39(1), 215–224 (2004)

    Article  Google Scholar 

  41. S. Nafisi, R. Ghomashchi, H. Vali, Eutectic nucleation in hypoeutectic Al–Si alloys. Mater. Charact. 59(10), 1466–1473 (2008)

    Article  Google Scholar 

  42. G. Heiberg, L. Arnberg, Investigation of the microstructure of the Al–Si eutectic in binary aluminium–7 wt% silicon alloys by electron backscatter diffraction (EBSD). J. Light Met. 1(1), 43–49 (2001)

    Article  Google Scholar 

  43. S.S. Sreeja Kumari, R.M. Pillai, T.P.D. Rajan, B.C. Pai, Effects of individual and combined additions of Be, Mn, Ca and Sr on the solidification behaviour, structure and mechanical properties of Al–7Si–0.3Mg–0.8Fe alloy. Mater. Sci. Eng. A 460–461, 561–573 (2007)

    Article  Google Scholar 

  44. S.S.S. Sreeja Kumari, R.M. Pillai, B.C. Pai, Structure and properties of calcium and strontium treated Al–7Si–0.3Mg alloy: a comparison. J. Alloys Compd. 460(1–2), 472–477 (2008)

    Article  Google Scholar 

  45. G. Heiberg, K. Nogita, A.K. Dahle, L. Arnberg, Columnar to equiaxed transition of eutectic in hypoeutectic aluminium–silicon alloys. Acta Mater. 50(10), 2537–2546 (2002)

    Article  Google Scholar 

  46. C.M. Dinnis, A.K. Dahle, J.A. Taylor, Three-dimensional analysis of eutectic grains in hypoeutectic Al–Si alloys. Mater. Sci. Eng. A 392(1–2), 440–448 (2005)

    Article  Google Scholar 

  47. S.G. Shabestari, M. Keshavarz, M.M. Hejazi, Effect of strontium on the kinetics of formation and segregation of intermetallic compounds in A380 aluminum alloy. J. Alloys Compd. 477(1–2), 892–899 (2009)

    Article  Google Scholar 

  48. L. Heusler, W. Schneider, Influence of alloying elements on the thermal analysis results of Al–Si cast alloys. J. Light Met. 2(1), 17–26 (2002)

    Article  Google Scholar 

  49. B. Kulunk, D.J. Zuliani, Applications for the strontium treatment of wrought and die-cast Al. JOM 48(10), 60–63 (1996)

    Article  Google Scholar 

  50. S.D. McDonald, A.K. Dahle, J.A. Taylor, D.H. St. John, Eutectic grains in unmodified and strontium-modified hypoeutectic aluminum-silicon alloys. Metall. Mater. Trans. A 35(6), 1829–1837 (2004)

    Article  Google Scholar 

  51. M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, J. Banhart, The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 60(9), 3920–3928 (2012)

    Article  Google Scholar 

  52. K. Nogita, H. Yasuda, K. Yoshida, K. Uesugi, A. Takeuchi, Y. Suzuki, A.K. Dahle, Determination of strontium segregation in modified hypoeutectic Al–Si alloy by micro X-ray fluorescence analysis. Scr. Mater. 55(9), 787–790 (2006)

    Article  Google Scholar 

  53. A.K. Dahle, K. Nogita, S.D. McDonald, J.W. Zindel, L.M. Hogan, Eutectic nucleation and growth in hypoeutectic Al–Si alloys at different strontium levels. Metall. Mater. Trans. A. 32(4), 949–960 (2001)

    Article  Google Scholar 

  54. Y.H. Cho, H.-C. Lee, K.H. Oh, A.K. Dahle, Effect of strontium and phosphorus on eutectic Al–Si nucleation and formation of β-Al5FeSi in hypoeutectic Al–Si foundry alloys. Metall. Mater. Trans. A. 39(10), 2435–2448 (2008)

    Article  Google Scholar 

  55. S.D. McDonald, A.K. Dahle, J.A. Taylor, D.H. St. John, Modification-related porosity formation in hypoeutectic aluminum–silicon alloys. Metall. Mater. Trans. B. 35(6), 1097–1106 (2004)

    Article  Google Scholar 

  56. S.D. McDonald, K. Nogita, A.K. Dahle, Eutectic grain size and strontium concentration in hypoeutectic aluminium–silicon alloys. J. Alloys Compd. 422(1–2), 184–191 (2006)

    Article  Google Scholar 

  57. H. Liao, Y. Sun, G. Sun, Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium. Mater. Sci. Eng. A 335(1–2), 62–66 (2002)

    Article  Google Scholar 

  58. M.M. Haque, M.A. Maleque, Effect of process variables on structure and properties of aluminium–silicon piston alloy. J. Mater. Process. Technol. 77(1–3), 122–128 (1998)

    Article  Google Scholar 

  59. M. Easton, D. StJohn, Grain refinement of aluminum alloys: part I. The nucleant and solute paradigms—a review of the literature. Metall. Mater. Trans. A 30(6), 1613–1623 (1999)

    Article  Google Scholar 

  60. M. Easton, D. StJohn, Grain refinement of aluminum alloys: part II. Confirmation of, and a mechanism for, the solute paradigm. Metall. Mater. Trans. A 30(6), 1625–1633 (1999)

    Article  Google Scholar 

  61. L. Lu, A.K. Dahle, Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al–Si foundry alloys. Mater. Sci. Eng. A 435–436, 288–296 (2006)

    Article  Google Scholar 

  62. D.G. Mallapur, S.A. Kori, K.R. Udupa, Influence of Ti, B and Sr on the microstructure and mechanical properties of A356 alloy. J. Mater. Sci. 46(6), 1622–1627 (2010)

    Article  Google Scholar 

  63. B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 47(1), 3–29 (2002)

    Article  Google Scholar 

  64. Y.C. Lee, A.K. Dahle, D.H. StJohn, J.E.C. Hutt, The effect of grain refinement and silicon content on grain formation in hypoeutectic Al–Si alloys. Mater. Sci. Eng. A 259(1), 43–52 (1999)

    Article  Google Scholar 

  65. R.P. Martukanitz, Selection and weldability of heat-treatable aluminum alloys. ASM Handb. 6, 528–536 (1993)

    Google Scholar 

  66. P.B. Dickerson, Welding of aluminum alloys. ASM Handb. 6, 722–739 (1993)

    Google Scholar 

  67. M.J. Caton, J.W. Jones, J.M. Boileau, J.E. Allison, The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminum alloy. Metall. Mater. Trans. A. 30(12), 3055–3068 (1999)

    Article  Google Scholar 

  68. J.M. Boileau, J.E. Allison, The effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminum alloy. Metall. Mater. Trans. A. 34(9), 1807–1820 (2003)

    Article  Google Scholar 

  69. I.C. Stone, H. Jones, Effect of cooling rate and front velocity on solidification micro structure selection in Al–3.5 wt% Fe–0 to 8.5 wt% Si alloys. Mater. Sci. Eng. A 226, 33–37 (1997)

    Article  Google Scholar 

  70. M.F. Ourfali, I. Todd, H. Jones, Effect of solidification cooling rate on the morphology and number per unit volume of primary Mg2Si particles in a hypereutectic Al–Mg–Si alloy. Metall. Mater. Trans. A. 36(5), 1368–1372 (2005)

    Article  Google Scholar 

  71. J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, Effect of cooling rate on the microstructure of hypereutectic Al-Mg2Si alloys. J. Mater. Sci. Lett. 19(20), 1825–1828 (2000)

    Article  Google Scholar 

  72. J.A. Juarez-Islas, D.H. Warrington, H. Jones, Formation of stable and metastable phases in Al–Mn alloys by the use of a gravity chill casting technique. J. Mater. Sci. 24(6), 2076–2080 (1989)

    Article  Google Scholar 

  73. A. Hawksworth, W.M. Rainforth, H. Jones, Solidification microstructure selection in the Al-rich Al–La, Al–Ce and Al–Nd systems. J. Cryst. Growth 197(1), 286–296 (1999)

    Article  Google Scholar 

  74. J.H. Perepezko, K. Hildal, Analysis of solidification microstructures during wedge-casting. Philos. Mag. 86(24), 3681–3701 (2006)

    Article  Google Scholar 

  75. A.F. Norman, P.B. Prangnell, R.S. McEwen, The solidification behaviour of dilute aluminum–scandium alloys. Acta Mater. 46(16), 5715–5732 (1998)

    Article  Google Scholar 

  76. A.F. Norman, K. Hyde, F. Costello, S. Thompson, S. Birley, P.B. Prangnell, Examination of the effect of Sc on 2000 and 7000 series aluminium castings: for improvements in fusion welding. Mater. Sci. Eng. A 354(1–2), 188–198 (2003)

    Article  Google Scholar 

  77. W. S. Rasband, Image J., U.S. National Institutes of Health, Bethsesda, Maryland, USA, http://imagej.nih.gov/ig/, 1997–2014

  78. D. Bouchard, J.S. Kirkaldy, Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metall. Mater. Trans. B 28(4), 651–663 (1997)

    Article  Google Scholar 

  79. S. Su, X. Liang, A. Moran, E.J. Lavernia, Solidification behavior of an Al–6Si alloy during spray atomization and deposition. Int. J. Rapid Solidif. 8(3), 161–177 (1994)

    Google Scholar 

  80. D.W. Heard, S. Brophy, M. Brochu, Solid freeform fabrication of Al–Si components via the CSC-MIG process. Can. Metall. Q. 51(3), 302–312 (2012)

    Article  Google Scholar 

  81. ASTM B557-02. Standard test methods for tension testing wrought and cast aluminum- and magnesium-alloy products. ASTM International, West Conshohocken, PA, 2013, www.astm.org

  82. Q.G. Wang, Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall. Mater. Trans. A. 34, 2887–2899 (2003)

    Article  Google Scholar 

  83. Q.G. Wang, C.J. Davidson, Solidification and precipitation behaviour of Al–Si–Mg casting alloys. J. Mater. Sci. 36(3), 739–750 (2001)

    Article  Google Scholar 

  84. S. Kou, Welding Metallurgy (Wiley, New York, 1987)

    Google Scholar 

  85. M. Tiryakioglu, J.T. Staley, Physical metallurgy and the effect of alloying additions in aluminum alloys, in Handbook of Aluminum, vol. 1, ed. by G.E. Totten, D.S. MacKenzie (Marcel Dekker Inc, New York, 2003), pp. 81–209

    Google Scholar 

  86. Q.G. Wang, C.H. Caceres, J.R. Griffiths, Damage by eutectic particle cracking in aluminum casting alloys A356/357. Metall. Mater. Trans. A 34, 2901–2912 (2003)

    Article  Google Scholar 

  87. M. Drouzy, S. Jacob, M. Richard, Interpretation of tensile results by means of quality index and probable yield strength—application to Al–Si Mg foundry alloys—France. Int. Cast Met. J. 5(2), 43–50 (1980)

    Google Scholar 

  88. M. Tiryakioglu, J. Campbell, Quality index for aluminum alloy castings. Int. J. Metalcast. 8(3), 39–42 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge valuable casting and chemical analysis assistance from P. Quimby, polishing assistance from V. Thole, and helpful discussions with Dr. Stephen Kampe and Dr. Thomas Dorin. The authors would also like to acknowledge support and helpful discussions with C. Hsu and technical assistance from the Miller Electric Manufacturing Company. This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-12-2-7230. The US Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amberlee S. Haselhuhn.

Ethics declarations

Conflict of interest

No conflicts of interest exist.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haselhuhn, A.S., Sanders, P.G. & Pearce, J.M. Hypoeutectic Aluminum–Silicon Alloy Development for GMAW-Based 3-D Printing Using Wedge Castings. Inter Metalcast 11, 843–856 (2017). https://doi.org/10.1007/s40962-017-0133-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-017-0133-z

Keywords

  • 3-D printing
  • additive manufacturing
  • aluminum
  • alloy development
  • metal casting
  • casting