A Transversal Imaginative Journey across the Realm of Mathematics
  • Jean-Yves BeziauEmail author


We discuss the many aspects and qualities of the number one: the different ways it can be represented, the different things it may represent. We discuss the ordinal and cardinal natures of the one, its algebraic behaviour as a neutral element and finally its role as a truth-value in logic.


One Philosophy of mathematics Logic Truth-value Boole Universal logic 



Although this paper is self-contained, it is the continuation of many previous ones in particular the one I just wrote before this one: “Is the principle of contradiction a consequence of x 2 = x?” (2016), related to a plenary talk I gave at the University of St Petersburg for the congress The 12th International Conference Logic Today: Developments and Perspectives in June 2016. Thanks again to my Russian colleagues for the invitation, in particular to Elena Lisanyuk and Ivan Mikirtumov.

I had the original idea of the present paper in July 2016 when in the Island of Santorini in Greece, formerly known as Kallíste (Kαλλιστη, “the most beautiful one”) and fictionally as Atlantis, (Ἀτλαντὶς νῆσος, “the island of Atlas”). I was invited on the Island by Ioannis Vandoulakis, organizer of the event The Logics of Image: Visualization, Iconicity, Imagination and Human Creativity. Following the idea of this congress, I made extensive use in this paper of images, similarly as in recent papers, in particular “Possibility, Imagination and Conception” (2016a, b, c) that I presented at this event. This is related to a project I am developing to promote the use of images in philosophy, The World Journal of Pictorial Philosophy:

I did not expound the present “MANY 1” paper at the event but had the occasion to discuss some of its contents with Ioannis who is a specialist of history of mathematics, and with other participants of the event, in particular Dénes Nagy the president of the The International Society for the Interdisciplinary Study of Symmetry, former student of the great Hungarian historian of mathematics, Árpád Szabó (whose work I know since my youth; Szabo 1969, 1984), and the plastic artist Catherine Chantilly.

I would like also to thank Mihir Chakraborty, founder of the Kolkata Logic Circle, who invited me to write this paper for a volume dedicated to pluralism in mathematics, a volume he has prepared with Michele Friend, author of the book Pluralism in mathematics (Friend 2014). I know Mihir since a couple of years. He was an invited speaker at the 3rd Congress on the Square of Opposition we organized in Beirut in June 2012, and he gave a tutorial at the 4th World Congress and School on Universal Logic we organized in Rio de Janeiro in April 2013. After that I have organized with him the 5th World Congress on Paraconsistency in February 2014, at the Indian Statistical Institute in Kolkata, whose motto is “Unity in diversity”. Mihir also invited me to take part to another event in Kolkata just after this one: International Congress on History and Philosophy of Mathematics—Tribute to SIR Ashutosh Mookherjee where I presented the talk “Bourbaki and Modern Mathematics”, which I never transformed into a paper but some things I said there are included in the present paper.

I was immersed in a Bourba-très-chic atmosphere since my youth but I deepened my knowledge about the history and philosophy of Bourbaki when in São Paulo, Brazil, in 1991–1992 working with Newton da Costa who used to take me to the house of his former teacher Edison Farah (1911–2006), the host of André Weil, Jean Dieudonné and Alexandre Grothendieck during their frequent visits to the University of São Paulo in the 1940s and 1950s. Farah proved a conjecture that Weil thought was false: general distributivity of conjunction relatively to disjunction is equivalent to the Axiom of Choice (Farah 1954). Therefore, one more formulation of AC among many ones.


  1. Badiou, A. (1988). L’Être et l’événement, Le Seuil, Paris. English translation: Being and Event, Continuum, New York, 2005.Google Scholar
  2. Beaulieu, L. (2006). Nicolas Bourbaki: History and legend, 1934–1956. Heidelberg: Springer.Google Scholar
  3. Bell, E. T. (1940). The developments of mathematics. New York: McGraw-Hill.Google Scholar
  4. Beziau, J.-Y. (1994). Universal logic. In T Childers & O Majer (Eds.) Logica’94proceedings of the 8th international symposium (pp. 73–93). Prague: Czech Academy of Sciences.Google Scholar
  5. Beziau, J.-Y. (1999). The mathematical structure of logical syntax. In W. A. Carnielli & I. M. L. D’ottaviano (Eds.), Advances in contemporary logic and computer science (pp. 1–17). Providence: American Mathematical Society.Google Scholar
  6. Beziau, J.-Y. (2002). La théorie des ensembles et la théorie des catégories: présentation de deux soeurs ennemies du point de vue de leurs relations avec les fondements des mathématiques. Boletín de la Asociación Matemática Venezolana, 9, 45–53.Google Scholar
  7. Beziau, J.-Y. (2006). 13 Questions about universal logic. Bulletin of the Section of Logic, 35, 133–150.Google Scholar
  8. Beziau, J.-Y. (2009). Bivalent semantics for De Morgan loic (the uselessness of four-valuedness). In W. A. Carnielli, M. E. Coniglio, & I. M. L. D’ottaviano (Eds.), The many sides of logic (pp. 391–402). London: College Publication.Google Scholar
  9. Beziau, J.-Y. (2010). Truth as a mathematical object. Principia, 14, 31–46.Google Scholar
  10. Beziau, J.-Y. (2012a). A history of truth-values. In D. M. Gabbay, J. Pelletier, & J. Woods (Eds.), Handbook of the history of logic, vol. 11—Logic: A history of its central concepts (pp. 233–305). Amsterdam: Elsevier.Google Scholar
  11. Beziau, J.-Y. (Ed.). (2012b). Universal logic: An anthology. Basel: Birkhäuser.Google Scholar
  12. Beziau, J.-Y. (2012c). The power of the hexagon. Logica Universalis, 6, 1–43.CrossRefGoogle Scholar
  13. Beziau, J.-Y. (Ed.). (2014). La pointure du symbole. Paris: Petra.Google Scholar
  14. Beziau, J.-Y. (2015). The relativity and universality of logic. Synthese—special issue Istvan Németi 70th Birthday, vol. 192 (pp. 1939–1954).Google Scholar
  15. Beziau, J.-Y. (2016a). Possibility, imagination and conception. Principios, 23, 59–95.Google Scholar
  16. Beziau, J.-Y. (2016b). Disentangling contradiction from contrariety via incompatibility. Logica Universalis, 10, 157–170.CrossRefGoogle Scholar
  17. Beziau, J.-Y. (2016). Is the principle of contradiction a consequence of x 2 = x. History and Philosophy of Logic Google Scholar
  18. Béziau, J.-Y. (2005). Le Château de la Quantification et ses Fantômes Démasqués. In P. Joray (Ed.), La quantification dans la logique moderne (pp. 211–260). Paris: L’harmattan.Google Scholar
  19. Béziau, J.-Y. (2010). What is a logic? Towards axiomatic emptiness. Logical Investigations, 16, 272–279.Google Scholar
  20. Béziau, J.-Y. (2015). Panorama de l’identité. Al Mukhatabat, 14, 205–219.Google Scholar
  21. Beziau, J.-Y., & Basti, G. (Eds.). (2016). The square of opposition: A cornerstone of thought. Basel: Birkhäuser.Google Scholar
  22. Beziau, J.-Y., & Gerogiorgakis, S. (Eds.). (2016). New dimensions of the square of opposition. Munich: Philosophia Verlag.Google Scholar
  23. Béziau, J.-Y. & Giovagnoli, R. (2016). The Vatican Square. Special issue of Logica Universalis, vol. 10, pp. 135–141Google Scholar
  24. Beziau, J.-Y., & Jacquette, D. (Eds.). (2012). Around and beyond the square of opposition. Basel: Birkhäuser.Google Scholar
  25. Beziau, J.-Y., & Payette, G. (Eds.). (2012). The square of opposition—a general framework for cognition. Bern: Peter Lang.Google Scholar
  26. Beziau, J.-Y. & Read, S. (eds). (2014). Special issue of History and Philosophy of Logic on the square of opposition.Google Scholar
  27. Birkhoff, G. (1940). Lattice theory. New York: American Mathematical Society.CrossRefGoogle Scholar
  28. Birkhoff, G. (1987). Universal algebra. In G.-C. Rota & J.-S. Oliveira (Eds.), Selected papers on algebra and topology by Garret Birkhoff (pp. 111–115). Basel: Birkhäuser.Google Scholar
  29. Boole, G. (1854). An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. London: MacMillan.CrossRefGoogle Scholar
  30. Bourbaki, N. (1939). Eléments de mathématique. Paris: Hermann.Google Scholar
  31. Bourbaki, N. (1948). L’architecture des mathématiques—La mathématique ou les mathématiques, In F. Le Lionnais (Ed) Les grands courants de la pensée mathématique, Cahier du Sud (pp. 35–47). Translated as “The Architecture of Mathematics”, American Mathematical Monthly, 57 (1950), pp. 221–232.Google Scholar
  32. Brown, F. (1958). One for the road. New York: Bantam.Google Scholar
  33. Cantor, G. & Dedekind, R. (1937). In E. Noether & J Cavaillès (eds.) Cantor-Dedekind Briefwechsel. Hermann, Paris.Google Scholar
  34. Carnap, R. (1934). Logical foundations of the unity of science. London: K. Paul, Trench, Trubner & Co.Google Scholar
  35. Chakraborty, M. K. (1988). Use of fuzzy set theory in introducing graded consequence in multiple valued logic. In M. M. Gupts & T. Yamakawa (Eds.), Fuzzy logic in knowledge-based systems, decision and control (pp. 247–257). Amsterdam: North-Holland.Google Scholar
  36. Chang, C., & Keisler, H. J. (1973). Model theory. Amsterdam: North-Holland.Google Scholar
  37. Connes, A. (2009). A view of mathematics. In H. Araki (Ed.), Mathematics: Concepts and foundations, Encyclopedia of Life Support System (Vol. 1). Paris: UNESCO.Google Scholar
  38. Corry, L. (2015). A brief history of numbers. Oxford: Oxford University Press.Google Scholar
  39. Couturat, L. (1900). Sur une définition logique du nombre. Revue de Métaphysique et de Morale, 8, 23–36.Google Scholar
  40. Couturat, L. (1901). La logique de Leibniz, d’après des fragments inédits. Paris: Alcan.Google Scholar
  41. Couturat, L., & Leau, L. (1903). Histoire de la langue universelle. Paris: Hachette.Google Scholar
  42. da Costa, N.C.A. (1980). Ensaio sobre os fundamentos da lógica, Hucitec, São Paulo. French translation: Logiques classiques et non classiquesEssai sur les fondements de la logique, Masson, Paris, 1997Google Scholar
  43. da Costa, N. C. A., & Beziau, J.-Y. (1994). Théorie de la valuation. Logique et Analyse, 146, 95–117.Google Scholar
  44. Dantzig, T. (1930). Number: The language of science—a critical survey written for the cultured non-mathematician. New York: Macmillan.Google Scholar
  45. Dauben, J. (ed). (1985). The history of mathematics from antiquity to the present: A selective annotated bibliography. Garland Press, New York (Revised Edition on CD-ROM edited by A. C. Lewis, in cooperation with the International Commission on the History of Mathematics, AMS, Providence 2000)Google Scholar
  46. Dauben, J. (2002). Review of Ifrah’s book. Notices of the American Mathematical Society 49: 32–38 (Part 1), 211–216 (Part 2).Google Scholar
  47. Denjoy, A. (1937). Les fonctions. In Encyclopédie Française, Tome 1, L’outillage mental. Pensée, Langage, Mathématique. Société de Gestion de l’Encyclopédie Française, Paris.Google Scholar
  48. Dieudonné, J. (1987). Pour l’honneur de l’esprit humain: les mathématiques aujourd’hui, Hachette, Paris. English translation: Mathematics, the music of reason, Sringer, Heidelberg, 1992Google Scholar
  49. Dupasquier, L.-G. (1921). Le développement de la notion de nombre. Paris and Neuchâtel: Attinger Frères.Google Scholar
  50. Durand-Richard, M.-J. (2009). Autour de George Peacock: comment fonder une conception symbolique des opérations. In L. Sinègre (Ed.), Histoire du calcul de la géométrie à l’algèbre (pp. 229–246). Paris: Vuibert.Google Scholar
  51. Eves, H. W. (1971). Mathematical circles revisited. Boston: Prindle, Weber & Schmidt.Google Scholar
  52. Farah, E. (1954). Algumas proposições equivalentes ao axioma da escolha. São Paulo: University of Sãulo.Google Scholar
  53. Frank, M. C., Everettb, D. L., Fedorenkoa, E., & Gibsona, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108, 819–824.CrossRefGoogle Scholar
  54. Friend, M. (2014). Pluralism in mathematics: A new position in philosophy of mathematics. Dordrecht: Springer.CrossRefGoogle Scholar
  55. Grattan-Guiness, I. (2000). The search for mathematical roots 1870–1940 (Logics, set theories and the foundations of mathematics from Carnot through Russell to Gödel). Princeton: Princeton University Press.Google Scholar
  56. Greimann, D. (2007). Did Frege really consider truth as an object? Gräzer Philosophische Studien, 75, 125–148.Google Scholar
  57. Guitart, R. (2000). Evidence et étrangeté—Mathématique, psychanalyse, Descartes et Freud. Paris: Presses Universitaires de France.Google Scholar
  58. Gunther, M. (1985). Zurich axioms. New Jersey: New American Library.Google Scholar
  59. Guo, Z. (2014). L’idée de Nature et le développement de la rationalité en Occident et en Chine. PhD, Université Jean Moulin, Lyon 3.Google Scholar
  60. Halmos, P. (1977). Logic from A to G. Mathematics Magazine, 50, 5–11.Google Scholar
  61. Heck, R., & May, R. (2016). Truth in frege. In M. Glanzberg (Ed.), Oxford handbook of truth. Oxford: Oxford University Press.Google Scholar
  62. Heidegger, M. (1962). Die Frage nach dem Ding, Zu Kants Lehre von den transzendentalen Grundsätzen, Niemeyer, Tübingen. English translation: What is a thing? Henry Regnery Company, Chicago, 1967Google Scholar
  63. Hilbert, D. (1900). Mathematische Probleme”, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse, pp. 253–297. English translation: “Mathematical Problem”, Bulletin of the American Mathematical Society 8 (1902), 437–479.Google Scholar
  64. Hilbert, D. (1923). Die logischen Grundlagen der Mathematik. Mathematische Annalen, 88, 151–165.CrossRefGoogle Scholar
  65. Ifrah, G. (1981). Histoire universelle des chiffres, l’intelligence des hommes racontées pare les nombres et le calcul. Paris: Robert Laffont.Google Scholar
  66. Lawvere, F. W., & Schanuel, S. H. (1997). Conceptual mathematics, a first introduction to categories. Buffalo: Buffalo Workshop Press.Google Scholar
  67. Lindenbaum, A., & Tarski, A. (1956). Communication sur les recherches de la théorie des ensembles. ´C. R. Soc. Sc. et Lett. de Varsovie, Cl, III 19:299–330.Google Scholar
  68. Łoś, J., & Suszko, R. (1958). Remarks on sentential logics. Indigationes Mathematicae, 20, 177–183.Google Scholar
  69. Łukasiewicz, J. (1920). O logice trójwartościowej. Ruch Filozoficny, 5(1920), 170–171.Google Scholar
  70. Mac Lane, S. (1986). Mathematics, from and function. Heidelberg: Springer.CrossRefGoogle Scholar
  71. Mac Lane, S. (1989). Concepts and categories in perspective. In P. Duren (Ed.), A century of mathematics in America, Part. 1 (pp. 323–365). Providence: American Mathematical Society.Google Scholar
  72. Mackenzie, C. E. (1980). Coded character sets, history and development. Boston: Addison-Wesley.Google Scholar
  73. Menninger, K. (1970). Number words and number symbols—A cultural history of numbers (First edition Zahlwort und Ziffer—Eine Kulturgeschichte der Zahl in 1934). Cambridge: MIT Press.Google Scholar
  74. Moretti, A. (2009). The geometry of logical opposition. PhD, University of Neuchâtel, Neuchâtel.Google Scholar
  75. Morris, C. (1960). On the history of the international encyclopedia of unified science. Synthese, 12, 517–521.CrossRefGoogle Scholar
  76. Perkins, F. (2004). Leibniz and China: A commerce of light. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  77. Pont, J.-C. (2014). Les symboles mathématiques, signes venus du Ciel. In J.-Y. Beziau (Ed.), La pointure du symbole (pp. 329–350). Paris: Petra.Google Scholar
  78. Post, E. (1921). Introduction to a general theory of propositions. American Journal of Mathematics, 43(1921), 163–185.CrossRefGoogle Scholar
  79. Priest, G. (2014). One: Being an investigation into the unity of reality and of its parts, including the singular Object which is nothingness. Oxford: Oxford University Press.CrossRefGoogle Scholar
  80. Rehmann, U. (Ed.). (2002). Encyclopedia of mathematics. Berlin: Springer.Google Scholar
  81. Robert, A. (2014). La mathématique, un langage symbolique. In J.-Y. Beziau (Ed.), La pointure du symbole (pp. 351–362). Paris: Petra.Google Scholar
  82. Rodin, A. (2014). Axiomatic method and category theory. Dordrecht: Springer.CrossRefGoogle Scholar
  83. Rombout, F. (2011). Frege, Russell and Wittgenstein on the judgment stroke. MD, University of AmsterdamGoogle Scholar
  84. Rouse Ball, W.-W. (1888). A short account of the history of mathematics. London: MacMillan.Google Scholar
  85. Rowe, D. E. (2013). Mathematics made in Germany: On the background to Hilbert’s Paris lecture. Mathematical Intelligencer, 35, 9–20.CrossRefGoogle Scholar
  86. Salmi, S. (2012). Carnap and the unity of science: The intellectual and moral formation of a science-technology generalist—a case study. PhD, University of Helsinki, Helsinki.Google Scholar
  87. Schmid, A.-F. (Ed.). (2001). Correspondance sur la philosophie, la logique et la politique: Bertrand Russell et Louis Couturat, 1897–1913, (Two volumes). Paris: Kimé.Google Scholar
  88. Serfati, M. (2005). La révolution symbolique. La constitution de l’écriture symbolique mathématique. Paris: Pétra.Google Scholar
  89. Sierpinski, W. (1947). L’hypothèse généralisée du continu et l’axiome du choix. Fundamenta Mathematicae, 34, 1–5.Google Scholar
  90. Sinaceur, H. (1991). Corps et modèlesEssai sur l’histoire de l’algèbre réelle, Vrin, Paris. English translation: Fields and modelsFrom Sturm to Tarski and Robinson, Birkhäuser, Basel, 2011Google Scholar
  91. Stenlund, S. (2014). The origin of symbolic mathematics and the end of the science of quantity. Uppasala: Uppsala University.Google Scholar
  92. Suszko, R. (1977). The Fregean axiom and Polish mathematical logic in the 1920s. Studia Logica, 36(1977), 87–90.Google Scholar
  93. Symons, J., Pomno, O., & Torres, J. M. (Eds.). (2011). Otto Neurath and the unity of science. Dordrecht: Springer.Google Scholar
  94. Szabo, A. (1969). Anfänge der grieschischen Mathematik. Munich and Vienna: Oldenbourg.CrossRefGoogle Scholar
  95. Szabo, A. (1984). Entfaltung der grieschischen Mathematik. Mannheim: Wissenschaftsverlag.Google Scholar
  96. Tarski, A. (1930). Über einige fundamenten Begriffe der Metamathematik, C. R. Soc. Sc. et Lett. de Varsovie XXIII, Classe III, pp. 22–29.Google Scholar
  97. Tarski, A. (1954–1955). Contributions to the theory of models. I, II, III. Indigationes Mathematicae, 16(1954), pp. 572–581, pp. 582–588; 17(1955), pp. 56–64.Google Scholar
  98. Tsuji, M., da Costa, N. C. A., & Doria, F. A. (1998). The incompleteness of theories of games. Journal of Philosophical Logic, 27, 553–568.CrossRefGoogle Scholar
  99. Weil, S. (1954) Cahiers I, Plon, Paris, 1940–1942. English translation: Notebooks, Routledge, Abingdon, 1954Google Scholar
  100. Weil, A. (1991). Souvenirs d’apprentissage, Birkhäuser, Basel. English translation: The apprenticeship of a mathematician, Birkhäuser, Basel, 1992Google Scholar
  101. Weisstein, E.W. (1998) Concise encyclopedia of mathematics, 1st edn. Chapman and Wolfram World
  102. Whitehead, A. N. (1898). A treatise of universal algebra. Cambridge: Cambridge University Press.Google Scholar
  103. Woleński, J. (2016). Adolf Lindenbaum. Internet Encyclopedia of Philosophy.
  104. Miller, J. Earliest known uses of some of the words of mathematics.
  105. Zygmunt, J., & Purdy, R. (2014). Adolf lindenbaum: Notes on his life, with bibliography and selected references. Logica Universalis, 8, 285–320.CrossRefGoogle Scholar

Copyright information

© ICPR 2017

Authors and Affiliations

  1. 1.University of BrazilRio de JaneiroBrazil

Personalised recommendations