Skip to main content
Log in

Analytical Finite Sample Econometrics: From A. L. Nagar to Now

  • Original Article
  • Published:
Journal of Quantitative Economics Aims and scope Submit manuscript

Abstract

Professor A.L. Nagar was a world-renowned econometrician and an international authority on finite sample econometrics with many path-breaking papers on the statistical properties of econometric estimators and test statistics. His contributions to applied econometrics have been also widely recognized. Nagar’s 1959 Econometrica paper on the so-called k-class estimators, together with a later one in 1962 on the double-k-class estimators, provided a very general framework of bias and mean squared error approximations for a large class of estimators and had motivated researchers to study a wide variety of issues such as many and weak instruments for many decades to follow. This paper reviews Nagar’s seminal contributions to analytical finite sample econometrics by providing historical backgrounds, discussing extensions and generalization of Nagar’s approach, and suggesting future directions of this literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a subtle connection between resampling techniques and higher-order expansions, see, for example, the classical work of Hall (1992) and the review by Horowitz (2001). We refrain from discussing the data-driven resampling methods and focus on analytical results in this paper.

  2. Some terms were missing in the formulae given by Bao and Ullah (2010) and Ullah (2004, page 186). The authors thank Raymond Kan for pointing this out.

  3. When \(K=1\), i.e., the just identified case, the 2SLS estimator (corresponding to \(k=0\)), does not have even the first moment, see Sawa (1969). For a definitive treatment of the issue of existence of moments, see Kinal (1980).

  4. Notably, Dwivedi and Srivastava (1984) presented the first and second moments in terms of double infinite series, whereas Bao and Kan (2013) presented, for any finite integer j, the j-th moment using a single infinite series.

References

  • Abadir, K.M. 1993. OLS bias in a nonstationary regression. Econometric Theory 9 (1): 81–93.

    Article  Google Scholar 

  • Anderson, T.W., and H. Rubin. 1949. Estimation of the parameters of a single equation in a complete system of stochastic equations. Annals of Mathematical Statistics 20 (1): 46–63.

    Article  Google Scholar 

  • Anderson, T.W., and T. Sawa. 1973. Distributions of estimates of coefficients of a single equation in a simultaneous system and their asymptotic expansions. Econometrica 41 (4): 683–714.

    Article  Google Scholar 

  • Angrist, J.D., and J. Pischke. 2009. Mostly harmless econometrics: an empiricist’s companion. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Bao, Y. 2013. Finite-sample bias of the QMLE in spatial autoregressive models. Econometric Theory 29 (1): 68–88.

    Article  Google Scholar 

  • Bao, Y., and R. Kan. 2013. On the moments of ratios of quadratic forms in normal random variables. Journal of Multivariate Analysis 117: 229–245.

    Article  Google Scholar 

  • Bao, Y., and A. Ullah. 2007a. Finite sample properties of maximum likelihood estimator in spatial models. Journal of Econometrics 137 (2): 396–413.

    Article  Google Scholar 

  • Bao, Y., and A. Ullah. 2007b. The second-order bias and mean squared error of estimators in time-series models. Journal of Econometrics 140 (2): 650–669.

    Article  Google Scholar 

  • Bao, Y., and A. Ullah. 2009. On skewness and kurtosis of econometric estimators. The Econometrics Journal 12 (2): 232–247.

    Article  Google Scholar 

  • Bao, Y., and A. Ullah. 2010. Expectation of quadratic forms in normal and nonnormal variables with applications. Journal of Statistical Planning and Inference 140 (5): 1193–1205.

    Article  Google Scholar 

  • Bao, Y., A. Ullah, and R. Zhang. 2014. Moment approximation for least-squares estimator in first-order regression models with unit root and nonnormal errors. Advances in Econometrics 33: 65–92.

    Article  Google Scholar 

  • Bao, Y., A. Ullah, and Y. Wang. 2019. Distribution of the mean reversion estimator in the Ornstein-Uhlenbeck process. Econometric Reviews 36 (6–9): 1039–1056.

    Google Scholar 

  • Bao, Y., X. Liu, and A. Ullah. 2021. On the exact statistical distribution of econometric estimators and test statistics. In Advances in statistics-theory and applications, ed. I. Ghosh, N. Balakrishnan, and T. Ng, 119–131. Berlin: Springer.

    Chapter  Google Scholar 

  • Basmann, R.L. 1961. A note on the exact finite sample frequency functions of generalized classical linear estimators in two leading over-identified cases. Journal of the American Statistical Association 56 (295): 619–636.

    Article  Google Scholar 

  • Bekker, P.A. 1994. Alternative approximations to the distributions of instrumental variable estimators. Econometrica 62 (3): 657–681.

    Article  Google Scholar 

  • Bhattacharya, R.N., and J.K. Ghosh. 1978. On the validity of the formal Edgeworth expansion. Annals of Statistics 6 (2): 434–451.

    Article  Google Scholar 

  • Chu, J., T.-H. Lee, A. Ullah, and H. Xu. 2021. Exact distribution of the f-statistic under heteroskedasticity of unknown form for improved inference. Journal of Statistical Computation and Simulation 91 (9): 1782–1801.

    Article  Google Scholar 

  • Donald, S.G., and W.K. Newey. 2001. Choosing the number of instruments. Econometrica 69 (5): 1161–1191.

    Article  Google Scholar 

  • Dwivedi, T.D., and V.K. Srivastava. 1984. Exact finite sample properties of double \(k\)-class estimators in simultaneous equations. Journal of Econometrics 25 (3): 263–283.

    Article  Google Scholar 

  • Edgeworth, F.Y. 1896. The asymmetrical probability curve. Philosophical Magazine Series 41 (249): 90–99.

    Article  Google Scholar 

  • Edgeworth, F.Y. 1905. The law of error. Transactions of the Cambridge Philosophical Society 20 (36–65): 113–141.

    Google Scholar 

  • Fisher, R.A. 1921. On the probable error of a coefficient of correlation deduced from a small sample. Metron 1: 3–32.

    Google Scholar 

  • Fisher, R.A. 1922. The goodness of fit of regression formulae and the distribution of regression coefficients. Journal of the Royal Statistical Society 85 (4): 597–612.

    Article  Google Scholar 

  • Fisher, R.A. 1928. The general sampling distribution of the multiple correlation coefficient. Proceedings of the Royal Society A 121 (788): 654–673.

    Google Scholar 

  • Fisher, R.A. 1935. The mathematical distributions used in the common tests of significance. Econometrica 3 (4): 353–365.

    Article  Google Scholar 

  • Forchini, G. 2002. The exact cumulative distribution function of a ratio of quadratic forms in normal variables, with application to the AR (1) model. Econometric Theory 18 (4): 823–852.

    Article  Google Scholar 

  • Franguridi, G., B. Gafarov, and K. Wüthrich. 2021. Conditional quantile estimators: a small sample theory. CESifo Working Paper Series 9046, CESifo. https://www.cesifo.org/DocDL/cesifo1_wp9046.pdf.

  • Fuller, W.A. 1977. Some properties of a modification of the limited information estimator. Econometrica 45 (4): 939–953.

    Article  Google Scholar 

  • Gil-Pelaez, J. 1951. Note on the inversion theorem. Biometrika 38 (3–4): 481–482.

    Article  Google Scholar 

  • Götze, F. 1987. Approximations for multivariate \(U\) -statistics. Journal of Multivariate Analysis 22 (2): 212–229.

    Article  Google Scholar 

  • Gupta, Y.P., and A. Ullah. 1970. A note on the moments of the Wald’s estimator. Statistica Neerlandica 24 (3): 109–123.

    Article  Google Scholar 

  • Gurland, J. 1948. Inversion formula for the distribution of ratios. Annals of Mathematical Statistics 19 (2): 228–237.

    Article  Google Scholar 

  • Haavelmo, T. 1947. Methods of measuring the marginal propensity to consume. Journal of the American Statistical Association 42 (237): 105–122.

    Article  Google Scholar 

  • Hahn, J., and W. Newey. 2004. Jackknife and analytical bias reduction for nonlinear panel models. Econometrica 72 (4): 1295–1319.

    Article  Google Scholar 

  • Hahn, J., J. Hausman, and G. Kuersteiner. 2004. Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations. The Econometrics Journal 7 (1): 272–306.

    Article  Google Scholar 

  • Hall, P. 1992. The bootstrap and Edgeworth Expansion. New York: Springer-Verlag.

    Book  Google Scholar 

  • Harding, M., J. Hausman, and C.J. Palmer. 2016. Finite sample bias corrected IV estimation for weak and many Instruments. Advances in Econometrics 36: 245–273.

    Article  Google Scholar 

  • Hashiguchi, H., N. Takayama, and A. Takemura. 2018. Distribution of the ratio of two Wishart matrices and cumulative probability evaluation by the holonomic gradient method. Journal of Multivariate Analysis 165: 270–278.

    Article  Google Scholar 

  • Hillier, G., and R. Kan. 2021a. Moments of a Wishart matrix. Journal of Quantitative Economics (this issue).

  • Hillier, G., and R. Kan. 2021b. Properties of the inverse of a noncentral Wishart matrix. Econometric Theory (forthcoming).

  • Hillier, G., T.W. Kinal, and V.K. Srivastava. 1984. On the moments of ordinary least squares and instrumental variables estimators in a general structural equation. Econometrica 52 (1): 185–202.

    Article  Google Scholar 

  • Hillier, G., R. Kan, and X. Wang. 2009. Computationally efficient recursions for top-order invariant polynomials with applications. Econometric Theory 25 (1): 211–242.

    Article  Google Scholar 

  • Hillier, G., R. Kan, and X. Wang. 2014. Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors. Econometric Theory 30 (2): 436–473.

    Article  Google Scholar 

  • Horowitz, J.L. 2001. The bootstrap. In Handbook of econometrics, vol. 5, ed. J. Heckman and E. Leamer, 3159–3228. Amsterdam: Elsevier.

    Google Scholar 

  • Hurwicz, L. 1950. Least squares bias in time series. In Statistical inference in dynamic economic models, ed. T.C. Koopmans, 365–383. New York: Wiley.

    Google Scholar 

  • Imhof, J.P. 1961. Computing the distribution of quadratic forms in normal variables. Biometrika 48 (3–4): 419–426.

    Article  Google Scholar 

  • Kabe, D.G. 1963. A note on the exact distributions of the gcl estimators in two leading over identified cases. Journal of the American Statistical Association 58 (302): 535–537.

    Article  Google Scholar 

  • Kabe, D.G. 1964. On the exact distributions of the GCL estimators in a leading three-equation case. Journal of the American Statistical Association 59 (307): 881–894.

    Article  Google Scholar 

  • Kadane, J.B. 1971. Comparison of k-class estimators when the disturbances are small. Econometrica 39 (5): 723–737.

    Article  Google Scholar 

  • Kakwani, N.C. 1967. The unbiasedness of Zellner’s seemingly unrelated regression equations estimators. Journal of the American Statistical Association 62 (317): 141–142.

    Article  Google Scholar 

  • Kakwani, N.C. 1971. The bias of the three-stage least-squares estimators in simultaneous equations. Australian Journal of Statistics 13: 19–26.

    Article  Google Scholar 

  • Kinal, T.W. 1980. The existence of moments of \(k\)-class estimators. Econometrica 48 (1): 241–249.

    Article  Google Scholar 

  • Kiviet, J.F., and G.D.A. Phillips. 1993. Alternative bias approximations in regressions with a lagged-dependent variable. Econometric Theory 9 (1): 62–80.

    Article  Google Scholar 

  • Kiviet, J.F., and G.D.A. Phillips. 2005. Moment approximation for least-squares estimators in dynamic regression models with a unit root. Econometrics Journal 8 (2): 115–142.

    Article  Google Scholar 

  • Kollo, T., and D. von Rosen. 1998. A unified approach to the approximation of multivariate densities. Scandinavian Journal of Statistics 25 (1): 93–109.

    Article  Google Scholar 

  • Kundhi, G., and P. Rilstone. 2012. Edgeworth expansions for GEL estimators. Journal of Multivariate Analysis 106: 118–146.

    Article  Google Scholar 

  • Kundhi, G., and P. Rilstone. 2013. Edgeworth and saddlepoint expansions for nonlinear estimators. Econometric Theory 29 (5): 1–22.

    Article  Google Scholar 

  • Kundhi, G., and P. Rilstone. 2020. Simplified matrix methods for multivariate Edgeworth expansions. Journal of Quantitative Economics 18: 293–326.

    Article  Google Scholar 

  • Lee, T.-H., A. Ullah, and H. Wang. 2018. The second-order bias of quantile estimators. Economics Letters 173: 143–147.

    Article  Google Scholar 

  • Maasoumi, E. 1978. A modified Stein-like estimator for the reduced form coefficients of simultaneous equations. Econometrica 46 (3): 695–703.

    Article  Google Scholar 

  • Maasoumi, E., and P.C.B. Phillips. 1982. On the behavior of inconsistent instrumental variable estimators. Journal of Econometrics 19 (2–3): 183–201.

    Article  Google Scholar 

  • Mariano, R.S. 1982. Analytical small-sample distribution theory in econometrics: the simultaneous-equations case. International Economic Review 23 (3): 503–533.

    Article  Google Scholar 

  • Mariano, R., and T. Sawa. 1972. The exact finite-sample distribution of the limited-information maximum likelihood estimator in the case of two included endogenous variables. Journal of the American Statistical Association 67 (337): 159–163.

    Article  Google Scholar 

  • Nagar, A.L. 1959. The bias and moment matrix of the general \(k\) -class estimators of the parameters in simultaneous equations. Econometrica 27 (4): 575–595.

    Article  Google Scholar 

  • Nagar, A.L. 1962. Double \(k\)-class estimators of parameters in simultaneous equations and their small sample properties. International Economic Review 3 (2): 168–188.

    Article  Google Scholar 

  • Nagar, A.L., and Y.P. Gupta. 1968. The bias of Liviatan’s consistent estimator in a distributed lag model. Econometrica 36 (2): 337–342.

    Article  Google Scholar 

  • Nagar, A.L., and N.C. Kakwani. 1965. Note on the use of prior information in statistical estimation of economic relations. Sankhy ā 27 (1): 105–112.

    Google Scholar 

  • Nagar, A.L., and A. Ullah. 1973. Note on approximate skewness, and kurtosis of the two stage least squares estimator. Indian Economic Review 7: 70–80.

    Google Scholar 

  • Phillips, P.C.B. 1977. Approximations to some finite sample distributions associated with a first-order stochastic difference equation. Econometrica 45 (2): 463–485.

    Article  Google Scholar 

  • Phillips, P.C.B. 1978. Edgeworth and saddlepoint approximations in the first-order noncircular autoregression. Biometrika 65 (1): 91–98.

    Article  Google Scholar 

  • Phillips, P.C.B. 1980. The exact distribution of instrumental variable estimators in an equation containing \(n+1\) endogenous variables. Econometrica 48 (4): 861–878.

    Article  Google Scholar 

  • Phillips, P.C.B. 1983. Exact small sample theory in the simultaneous equations model. In Handbook of econometrics, ed. Z. Griliches and M. Intriligator, 449–516. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Phillips, P.C.B., and J.H. Lee. 2013. Predictive regression under various degrees of persistence and robust long-horizon regression. Journal of Econometrics 177 (2): 250–264.

    Article  Google Scholar 

  • Phillips, P.C.B., and J.Y. Park. 1988. On the formulation of Wald tests of nonlinear restrictions. Econometrica 56 (5): 1065–1083.

    Article  Google Scholar 

  • Richardson, D.H. 1968. The exact distribution of a structural coefficient estimator. Journal of the American Statistical Association 63 (324): 1214–1226.

    Article  Google Scholar 

  • Rilstone, P., and A. Ullah. 2002. Sampling bias in Heckman’s sample selection estimator. In Recent advances in statistical methods, ed. Y.P. Chaubey, 263–273. London: World Scientific Publishing Company.

    Chapter  Google Scholar 

  • Rilstone, P., V.K. Srivastava, and A. Ullah. 1996. The second-order bias and mean squared error of nonlinear estimators. Journal of Econometrics 75 (2): 369–395.

    Article  Google Scholar 

  • Rothenberg, T.J. 1984a. Approximating the distributions of econometric estimators and test statistics. In Handbook of econometrics, vol. 2, ed. Z. Griliches and M. Intriligator, 881–893. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Rothenberg, T.J. 1984b. Approximate normality of generalized least squares estimates. Econometrica 52 (4): 811–825.

    Article  Google Scholar 

  • Sargan, J.D. 1975. Gram-Charlier approximations applied to t ratios of k-class estimators. Econometrica 43 (2): 327–346.

    Article  Google Scholar 

  • Sargan, J.D. 1976. Econometric estimators and the Edgeworth approximation. Econometrica 44 (3): 421–448.

    Article  Google Scholar 

  • Sargan, J.D. 1980. Some tests for dynamic specification for a single equation. Econometrica 48 (4): 879–897.

    Article  Google Scholar 

  • Sawa, T. 1969. The exact sampling distribution of ordinary least squares and two-stage least squares estimators. Journal of the American Statistical Association 64 (327): 923–937.

    Article  Google Scholar 

  • Sawa, T. 1972. Finite sample properties of the \(k\)-class estimators. Econometrica 40 (4): 653–680.

    Article  Google Scholar 

  • Skovgaard, Ib. M. 1986. On multivariate Edgeworth expansions. International Statistical Review 54 (2): 169–186.

    Article  Google Scholar 

  • Srinivasan, T. 1970. Approximations to finite sample moments of estimators whose exact sampling distributions are unknown. Econometrica 38 (3): 533–541.

    Article  Google Scholar 

  • Srivastava, V., and D.E.A. Giles. 1987. Seemingly unrelated regression equations models: estimation and inference. New York: Marcel Dekker.

    Google Scholar 

  • Srivastava, V.K., and K. Maekawa. 1995. Efficiency properties of feasible generalized least squares estimators in SURE models under non-normal disturbances. Journal of Econometrics 66 (1–2): 99–121.

    Article  Google Scholar 

  • Taylor, W.E. 1983. On the relevance of finite sample distribution theory. Econometric Reviews 2 (1): 1–39.

    Article  Google Scholar 

  • Ullah, A. 2004. Finite sample econometrics. New York: Oxford University Press.

    Book  Google Scholar 

  • Ullah, A., and A.L. Nagar. 1974. The exact mean of the two stage least squares estimator of the structural parameters in the equation having three endogenous variables. Econometrica 42 (4): 749–758.

    Article  Google Scholar 

  • Zhou, Q., and J. Yu. 2015. Asymptotic theory for linear diffusions under alternative sampling schemes. Economics Letters 128: 1–5.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Professor A.L.Nagar for this special issue. We thank Essie Maasoumi for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Ullah, A. Analytical Finite Sample Econometrics: From A. L. Nagar to Now. J. Quant. Econ. 19 (Suppl 1), 17–37 (2021). https://doi.org/10.1007/s40953-021-00261-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40953-021-00261-z

Keywords

JEL Classification

Navigation