Skip to main content

Advertisement

Log in

Variation of failure properties, creep response and ultrasonic velocities of sandstone upon injecting CO2-enriched brine

  • Original Article
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

During the past decades, greenhouse gas mitigation techniques such as Carbon dioxide Capturing, Utilization, and Sequestration gained more attention due to the environmental concerns associated with the adverse impacts of global warming. Besides the feasibility of capturing and long-time storage of the CO2, it is of utmost importance to ensure longevity and safety of long-term CO2 storage. To evaluate the effects of CO2 injection into a deep saline reservoir, CO2-enriched brine was injected into the Triassic Peco sandstone in controlled-laboratory experiments. The injection was performed through a core-flooding experiment in which CO2-enriched brine was injected under a very slow rate, to capture the short/long-term chemical reactions between the rock minerals and CO2-enriched brine. The injection experiment was performed under different confining stresses and pore-pressures to mimic reservoir conditions at different depths. The creep, ultrasonic wave (i.e., P- and S-Wave) velocity measurements, and multi-stage failure tests were conducted on intact, and CO2-enriched brine injected Peco Sandstone specimens to capture potential changes in time-dependent deformation, strength properties, and P- and S-Wave velocities. The results indicated a significant increase in the creep response. At the same time, strength properties and ultrasonic wave velocities exhibited significant reductions, due to the dissolution of grain boundaries and cementing minerals, which was caused by the injection of CO2-enriched brine. Results of this study indicate that the potential increase in time-dependent deformation (i.e., creep rate) should be considered at the reservoir scale since the accelerated creep behavior can potentially lead to reservoir compaction, which consequently endangers wellbore stability and caprock integrity. In addition, the significant reduction in cohesion and friction angle can likely increase the slip tendency of the reservoir rock under certain injection scenarios, which consequently increases the possibility of fault reactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Alam MM, Hjuler ML, Christensen HF, Fabricius IL (2014) Petrophysical and rock-mechanics effects of CO2 injection for enhanced oil recovery: Experimental study on chalk from South Arne field, North Sea. J Petrol Sci Eng 122:468–487. https://doi.org/10.1016/j.petrol.2014.08.008

    Article  Google Scholar 

  • ASTM (American Society for Testing and Materials) (1992) Standard guide for computed tomography (CT) imaging, ASTM designation E 1441–92a. In: 1992 annual book of ASTM standards, section 3 metals test methods and analytical procedures: Philadelphia, ASTM, pp 690–713

  • Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers Manag 44(20):3151–3175. https://doi.org/10.1016/S0196-8904(03)00101-8

    Article  Google Scholar 

  • Berrezueta E, González-Menéndez L, Ordóñez-Casado B, Olaya P (2015) Pore network quantification of sandstones under experimental CO2 injection using image analysis. Comput Geosci 77:97–110. https://doi.org/10.1016/j.cageo.2015.01.005

    Article  Google Scholar 

  • Bohloli B, Skurtveit E, Choi JC, Grande L, Soldal M, Wilkinson HD (2015) Shear Strength Parameters of Cretaceous Shales from the Cap-rock of the Longyearbyen CO2 Storage Pilot, Svalbard. 2nd EAGE Workshop on Geomechanics and Energy. Celle, Germany

  • Busch A, Bertier P, Gensterblum Y, Rother G, Spiers C, Zhang M, Wentinck H (2016) On sorption and swelling of CO2 in clays. Geomech Geophys Geo-Energ Geo-Resour 2:111–130

    Article  Google Scholar 

  • Carcione JM, Gei D, Picotti S, Misnan MS et al (2020) Porosity and permeability of the overburden from wireline logs: a case study from offshore Malaysia. Geomech Geophys Geo-Energ Geo-Resour 6(3):1–12

    Article  Google Scholar 

  • Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50(4):571–581. https://doi.org/10.1190/1.1441933

    Article  Google Scholar 

  • Cerasi P, Lund E, Kleiven ML et al (2017) Shale creep as leakage healing mechanism in CO2 sequestration. Energy Procedia 114:3096–3112. https://doi.org/10.1016/j.egypro.2017.03.1439

    Article  Google Scholar 

  • Chester JS, Lenz SC, Chester FM, Lang RA (2004) Mechanisms of compaction of quartz sand at diagenetic conditions. Earth Planet Sci Lett 220(3–4):435–451. https://doi.org/10.1016/S0012-821X(04)00054-8

    Article  Google Scholar 

  • Chester FM, Chester JS, Kronenberg AK, Hajash A (2007) Subcritical creep compaction of quartz sand at diagenetic conditions: Effects of water and grain size. J Geophys Res Solid Earth. https://doi.org/10.1029/2006JB004317

    Article  Google Scholar 

  • DOE US (2007) Carbon sequestration ATLAS of the United States and Canada. Office of fossil energy, national energy technology laboratory, Morgantown, WV, p 90

  • De Jong SM, Spiers CJ, Busch A (2014) Development of swelling strain in smectite clays through exposure to carbon dioxide. Int J Greenhouse Gas Control 24:149–161

    Article  Google Scholar 

  • Doughty C, Preuss K, Benson SM, Hovorka SD, Green CT (2001) Capacity investigation of brine-bearing sands of the Frio Formation for geologic sequestration of CO2, in Proceedings, First National Conference on Carbon Sequestration, May 14–17, Washington, D.C., sponsored by National Energy Technology Laboratory. GCCC Digital Publication Series #01–03

  • Falcon-Suarez I, Canal-Vila J, Delgado-Martin J, North L, Best A (2017) Characterization and multifaceted anisotropy assessment of Corvio sandstone for geological CO2 storage studies. Geophys Prospect 65(5):1293–1311. https://doi.org/10.1111/1365-2478.12469

    Article  Google Scholar 

  • Fang Y, Wang C, Elsworth D, Ishibashi T (2017) Seismicity permeability coupling in the behavior of gas shales, CO2 storage and deep geothermal energy. Geomech Geophys Geo-Energ Geo-Resour 3(2):189–198

    Article  Google Scholar 

  • Fjar E, Holt RM, Raaen AM, Horsrud P (2008) Petroleum related rock mechanics. Elsevier, Oxford

    Google Scholar 

  • Foroutan M, Ghazanfari E (2020) CO2-enriched brine injection’s impact on mechanical properties of a sandstone specimen. In E3S web of conferences. 205: 02005. Doi: https://doi.org/10.1051/e3sconf/202020502005

  • Foroutan M, Ghazanfari E, Amirlatifi A, Perdrial N (2020) Variation of pore-network, mechanical and hydrological characteristics of sandstone specimens through CO2-enriched brine injection. Geomech Energy Environ. https://doi.org/10.1016/j.gete.2020.100217

    Article  Google Scholar 

  • Gershenzon NI, Ritzi RW, Dominic DF, Mehnert E (2017) Effective constitutive relations for simulating CO2 capillary trapping in heterogeneous reservoirs with fluvial sedimentary architecture. Geomech Geophys Geo-Energ Geo-Resour 3(3):265–279

    Article  Google Scholar 

  • Han DH, Nur A, Morgan D (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51(11):2093–2107. https://doi.org/10.1190/1.1442062

    Article  Google Scholar 

  • Hangx SJT, Spiers CJ, Peach CJ (2010) Creep of simulated reservoir sands and coupled chemical-mechanical effects of CO2 injection. J Geophys Res Solid Earth. https://doi.org/10.1029/2009JB006939

    Article  Google Scholar 

  • Hangx S, Van der Linden A, Marcelis F, Bauer A (2013) The effect of CO2 on the mechanical properties of the Captain Sandstone: geological storage of CO2 at the Goldeneye field (UK). Int J Greenhouse Gas Control 19:609–619. https://doi.org/10.1016/j.ijggc.2012.12.016

    Article  Google Scholar 

  • Huaman RNE, Jun TX (2014) Energy related CO2 emissions and the progress on CCS projects: a review. Renew Sustain Energy Rev 31:368–385. https://doi.org/10.1016/j.rser.2013.12.002

    Article  Google Scholar 

  • Jaeger JC, Cook NG (1969) Fundamentals of rock mechanics. Methuen Co., Ltd., London, p 513

    Google Scholar 

  • Jafari M, Jung J (2018) Variation of contact angles in Brine/CO2/mica system considering short-term geological CO2 sequestration condition. Geofluids. https://doi.org/10.1155/2018/3501459

    Article  Google Scholar 

  • Kamali-Asl A, Kc B, Foroutan M, Ghazanfari E, Cladouhos TT, Stevens M (2019) Stress-strain response and seismic signature analysis of phyllite reservoir rocks from Blue Mountain geothermal field. Geothermics 77:204–223. https://doi.org/10.1016/j.geothermics.2018.09.004

    Article  Google Scholar 

  • Kamali-Asl A, Ghazanfari E, Newell P, Stevens M (2018) Elastic, viscoelastic, and strength properties of Marcellus Shale specimens. J Petrol Sci Eng 171:662–679. https://doi.org/10.1016/j.petrol.2018.05.074

    Article  Google Scholar 

  • Karner SL, Chester JS, Chester FM, Kronenberg AK, Hajash A (2005) Laboratory deformation of granular quartz sand: Implications for the burial of clastic rocks. AAPG Bull 89(5):603–625. https://doi.org/10.1306/12200404010

    Article  Google Scholar 

  • Lakes RS (2009) Viscoelastic materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lamy-Chappuis B, Angus D, Fisher Q, Grattoni C, Yardley BW (2014) Rapid porosity and permeability changes of calcareous sandstone due to CO2-enriched brine injection. Geophys Res Lett 41(2):399–406. https://doi.org/10.1002/2013GL058534

    Article  Google Scholar 

  • Lamy-Chappuis B, Angus D, Fisher QJ, Yardley BW (2016) The effect of CO2-enriched brine injection on the mechanical properties of calcite-bearing sandstone. Int J Greenhouse Gas Control 52:84–95. https://doi.org/10.1016/j.ijggc.2016.06.018

    Article  Google Scholar 

  • Le Guen Y, Renard F, Hellmann R, Brosse E, Collombet M, Tisserand D, Gratier JP (2007) Enhanced deformation of limestone and sandstone in the presence of high fluids. J Geophys Res Solid Earth. https://doi.org/10.1029/2006JB004637

    Article  Google Scholar 

  • Li JF, Yang Y, Fan X et al (2018) Numerical analysis of the hydrofracturing behaviours and mechanisms of heterogeneous reservoir rock using the continuum-based discrete element method considering pre-existing fractures. Geomech Geophys Geo-Energ Geo-Resour 4(4):383–401. https://doi.org/10.1007/s40948-018-0095-5

    Article  Google Scholar 

  • Liang Z, Chen Z, Rahman SS (2020) Experimental investigation of the primary and secondary creep behaviour of shale gas reservoir rocks from deep sections of the Cooper Basin. J Nat Gas Sci Eng 73:103044. https://doi.org/10.1016/j.ijrmms.2014.04.002

    Article  Google Scholar 

  • Liteanu E, Spiers CJ (2009) Influence of pore fluid salt content on compaction creep of calcite aggregates in the presence of supercritical CO2. Chem geol 265(1–2):134–147. https://doi.org/10.1016/j.chemgeo.2008.12.010

    Article  Google Scholar 

  • Liteanu E, Niemeijer A, Spiers CJ, Peach CJ, De Bresser JHP (2012) The effect of CO2 on creep of wet calcite aggregates. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB008789

    Article  Google Scholar 

  • Liu JF, Cao XL, Xu J, Yao QL, Ni HY (2020) A new method for threshold determination of gray image. Geomech Geophys Geo-Energ Geo-Resour 6(4):1–13. https://doi.org/10.1007/s40948-020-00198-2

    Article  Google Scholar 

  • Lora RV, Ghazanfari E (2014) Geomechanical characterization of shale formations for sustainable production. In Shale energy engineering 2014: technical challenges, environmental issues, and public Policy. Doi: https://doi.org/10.1061/9780784413654.014

  • Lyu Q, Long X, Ranjith PG, Tan J, Zhou J, Wang Z, Luo W (2018) A laboratory study of geomechanical characteristics of black shales after sub-critical/super-critical CO2 + brine saturation. Geomech Geophys Geo-Energ Geo-Resour 4(2):141–156. https://doi.org/10.1007/s40948-018-0079-5

    Article  Google Scholar 

  • Lyu Q, Wang K, Wanniarachchi WAM, Hu C, Shi J (2020) Hydro-mechanical properties of a low-clay shale with supercritical CO 2 imbibition. Geomech Geophys Geo-Energ Geo-Resour 6(4):1–14

    Article  Google Scholar 

  • Mahzari P, Jones AP, Oelkers EH (2019) An integrated evaluation of enhanced oil recovery and geochemical processes for carbonated water injection in carbonate rocks. J Petrol Sci Eng 181:106188. https://doi.org/10.1016/j.petrol.2019.106188

    Article  Google Scholar 

  • Marbler H, Erickson KP, Schmidt M, Lempp C, Pöllmann H (2013) Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2: an experimental approach to in situ conditions in deep geological reservoirs. Environ Earth Sci 69(6):1981–1998. https://doi.org/10.1007/s12665-012-2033-0

    Article  Google Scholar 

  • Metz B, Davidson O, De Coninck HC, Loos M, Meyer LA (2005) IPCC, 2005: IPCC special report on carbon dioxide capture and storage. Working Group III of the Intergovernmental Panel on Climate Change, Cambridge

    Google Scholar 

  • Miller QR, Wang X, Kaszuba JP et al (2016) Experimental study of porosity changes in shale caprocks exposed to carbon dioxide-saturated brine II: Insights from aqueous geochemistry. Environ Eng Sci 33(10):736–744

    Article  Google Scholar 

  • Morris A, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24(3):275–278. https://doi.org/10.1130/0091-7613(1996)024%3c0275:STAAFR%3e2.3.CO;2

    Article  Google Scholar 

  • Mortezaei K, Amirlatifi A, Ghazanfari E, Vahedifard F (2018) Potential CO2 leakage from geological storage sites: advances and challenges. Environ Geotech. https://doi.org/10.1680/jenge.18.00041

    Article  Google Scholar 

  • Mouzakis KM, Navarre-Sitchler AK, Rother G et al (2016) Experimental study of porosity changes in shale caprocks exposed to CO2-saturated brines I: Evolution of mineralogy, pore connectivity, pore size distribution, and surface area. Environ Eng Sci 33(10):725–735

    Article  Google Scholar 

  • Naderi S, Simjoo M (2019) Numerical study of low salinity water alternating CO2 injection for enhancing oil recovery in a sandstone reservoir: coupled geochemical and fluid flow modeling. J Petrol Sci Eng 173:279–286. https://doi.org/10.1016/j.petrol.2018.10.009

    Article  Google Scholar 

  • Nasvi MCM, Ranjith PG, Sanjayan J, Haque A (2013) Sub-and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study. Energy 54:231–239. https://doi.org/10.1016/j.energy.2013.01.049

    Article  Google Scholar 

  • Nguyen MC, Zhang X, Wei N, Li J, Li X, Zhang Y, Stauffer PH (2017) An object-based modeling and sensitivity analysis study in support of CO2 storage in deep saline aquifers at the Shenhua site. Ordos Basin Geomech Geophys Geo-Energ Geo-Resour 3(3):1–22

    Google Scholar 

  • Nicot JP, Duncan IJ (2012) Common attributes of hydraulically fractured oil and gas production and CO2 geological sequestration. Greenhouse Gases: Sci & Technol 2(5):352–368. https://doi.org/10.1002/ghg.1300

    Article  Google Scholar 

  • Oikawa Y, Takehara Tosha, T (2008) Effect of CO2 injection on mechanical properties of Berea Sandstone. In: The 42nd US Rock Mechanics Symposium (USRMS). American Rock Mechanics Association

  • Pachauri RK, Reisinger A (2008) Climate change 2007. Contribution of Working Groups I, II and III to the fourth assessment report. Switzerland

  • Perera MSA, Rathnaweera TD, Ranjith PG, Wanniarachchi WAM, Nasvi MCA, Abdulagatov IM, Haque A (2016) Laboratory measurement of deformation-induced hydro-mechanical properties of reservoir rock in deep saline aquifers: An experimental study of Hawkesbury formation. Mar Petrol Geol 77:640–652. https://doi.org/10.1016/j.marpetgeo.2016.07.012

    Article  Google Scholar 

  • Rassouli FS, Zoback MD (2018) Comparison of short-term and long-term creep experiments in shales and carbonates from unconventional gas reservoirs. Rock Mech Rock Eng 51(7):1995–2014. https://doi.org/10.1007/s00603-018-1444-y

    Article  Google Scholar 

  • Rathnaweera TD, Ranjith PG, Perera MSA et al (2015) CO2-induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin: an experimental study. Mater Sci Eng 641:123–137. https://doi.org/10.1016/j.msea.2015.05.029

    Article  Google Scholar 

  • Rathnaweera TD, Ranjith PG, Perera MSA (2016) Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers. Sci Rep 6:19362

    Article  Google Scholar 

  • Rathnaweera TD, Ranjith PG, Perera MSA et al (2017) An experimental investigation of coupled chemico-mineralogical and mechanical changes in varyingly-cemented sandstones upon CO2 injection in deep saline aquifer environments. Energy 133:404–414. https://doi.org/10.1016/j.energy.2017.05.154

    Article  Google Scholar 

  • Rathnaweera TD, Ranjith PG, Perera MSA, Wanniarachchi WAM, Bandara KMAS (2018) Stress state and stress path evaluation to address uncertainties in reservoir rock failure in CO2 sequestration in deep saline aquifers: An experimental study of the Hawkesbury sandstone formation. J CO2 Util 26:184–201. https://doi.org/10.1016/j.jcou.2018.05.008

    Article  Google Scholar 

  • Renard F, Gundersen E, Hellmann R, Collombet M, Le Guen Y (2005) Numerical modeling of the effect of carbon dioxide sequestration on the rate of pressure solution creep in limestone: Preliminary results. Oil Gas Sci Technol 60(2):381–399

    Article  Google Scholar 

  • Rimmelé G, Barlet-Gouédard V, Renard F (2010) Evolution of the petrophysical and mineralogical properties of two reservoir rocks under thermodynamic conditions relevant for CO2 geological storage at 3 km depth. Oil Gas Sci Tech-Revue de l’Institut Français du Pétrole 65(4):565–580

    Article  Google Scholar 

  • Shengqi YANG, Jiang Y (2010) Triaxial mechanical creep behavior of sandstone. Min Sci Technol (China) 20(3):339–349. https://doi.org/10.1016/S1674-5264(09)60206-4

    Article  Google Scholar 

  • Shi Z, Sun L, Haljasmaa I et al (2019) Impact of Brine/CO2 exposure on the transport and mechanical properties of the Mt Simon sandstone. J Petrol Sci Eng 177:295–305. https://doi.org/10.1016/j.petrol.2019.01.112

    Article  Google Scholar 

  • Soltanian MR, Dai Z (2017) Geologic CO2 sequestration: progress and challenges. Geomech Geophys Geo-Energy Geo-Resources 3(3):221–223. https://doi.org/10.1007/s40948-017-0066-2

    Article  Google Scholar 

  • Sone H, Zoback MD (2014) Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in-situ state of stress. Int J Rock Mech Min Sci 69:120–132. https://doi.org/10.1016/j.ijrmms.2014.04.002

    Article  Google Scholar 

  • Soong Y, Goodman AL, McCarthy-Jones JR, Baltrus JP (2004) Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Convers Manag 45(11–12):1845–1859. https://doi.org/10.1016/j.enconman.2003.09.029

    Article  Google Scholar 

  • Standard ASTM D4543-01 (2001) Standard practices for preparing rock core specimens and determining dimensional and shape tolerances. ASTM International, West Conshohocken

  • Standard ASTM D5777-00 (2011) Standard guide for using the seismic refraction method for subsurface investigation. ASTM International, West Conshohocken

  • Stocker TF, Qin D, Plattner GK et al (2014) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change.

  • Taghipour M, Ghafoori M, Lashkaripour GR, Moghaddas NH, Molaghab A (2019) Estimation of the current stress field and fault reactivation analysis in the Asmari reservoir. SW Iran Petrol Sci 16(3):513–526. https://doi.org/10.1007/s12182-019-0331-9

    Article  Google Scholar 

  • Tutolo BM, Luhmann AJ, Kong XZ, Saar MO, Seyfried WE Jr (2015) CO2 sequestration in feldspar-rich sandstone: coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties. Geochim Cosmochim Acta 160:132–154

    Article  Google Scholar 

  • Urpi L, Rinaldi AP, Rutqvist J, Cappa F, Spiers CJ (2016) Dynamic simulation of CO2-injection-induced fault rupture with slip-rate dependent friction coefficient. Geomech Energy Environ 7:47–65

    Article  Google Scholar 

  • Vialle S, Vanorio T (2011) Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2-saturated water. Geophys Res Lett. https://doi.org/10.1029/2010GL045606

    Article  Google Scholar 

  • Worum G, van Wees JD, Bada G, van Balen RT, Cloetingh S, Pagnier H (2004) Slip tendency analysis as a tool to constrain fault reactivation: a numerical approach applied to three-dimensional fault models in the Roer Valley rift system (southeast Netherlands). J Geophys Res Solid Earth. https://doi.org/10.1029/2003JB002586

    Article  Google Scholar 

  • Zhang CP, Cheng P, Lu YY, Zhang DC, Zhou JP, Ma ZY (2020) Experimental evaluation of gas flow characteristics in fractured siltstone under various reservoir and injection conditions: an application to CO2-based fracturing. Geomech Geophys Geo-Energ Geo-Resour 6(1):23

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation for providing the funding for acquisition of X-ray Micro CT-scan used in this study. In addition, we thank Mr. Kamruzzaman Khan and Kevin Fischer in helping with brine preparation and ICP-OES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Foroutan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroutan, M., Ghazanfari, E. & Amirlatifi, A. Variation of failure properties, creep response and ultrasonic velocities of sandstone upon injecting CO2-enriched brine. Geomech. Geophys. Geo-energ. Geo-resour. 7, 27 (2021). https://doi.org/10.1007/s40948-021-00223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40948-021-00223-y

Keywords

Navigation