An object-based modeling and sensitivity analysis study in support of CO2 storage in deep saline aquifers at the Shenhua site, Ordos Basin

  • Minh C. Nguyen
  • Xu Zhang
  • Ning Wei
  • Jun Li
  • Xiaochun Li
  • Ye Zhang
  • Philip H. Stauffer
Original Article


The Shenhua Carbon Capture and Storage (CCS) project at the Shenbei Slope injection site in North Yulin is the first 100,000 ton/year scale CCS pilot project in China with an injection operation lasting nearly 3 years. While the project turned into an operational success with 300,000 tons of CO2 being sequestered, several aspects of reservoir dynamic behavior and the role of reservoir heterogeneity are not clearly understood. For example, although there was an initial period of wellhead pressure (WHP) increase at the injection well, WHP incrementally declined for most of the time. The majority of CO2 was received by the topmost sandstone of the Liujiagou formation in the injection interval instead of the lowermost limestone of the Majiagou formation, suggesting strong reservoir heterogeneity. Knowledge of the key reservoir processes and properties that resulted in these observations would help for predicting long-term storage safety and aiding the design of a larger-scale CCS operation at the same site. In this study, we investigate various object-based models and important reservoir parameters to determine aspects of heterogeneity that have the most impact on pressure behavior at the injection well and the observed plume dynamics after injection. Simulation results suggest that the extent of CO2 plume is most sensitive to the geometry of fluvial channels, and specifically, the amount of connected sandbodies that facilitate lateral fluid migration. Along with the injection rate, sandbody permeability plays a significant role in determining pressure near the injection well and in the reservoir. Further work will incorporate the dynamics of CO2 flow down the injection wellbore to derive a more accurate representation of injection rate under the reservoir condition. As drilling and analog data also suggest that fractures may exist in the Liujiagou formation, future work will also construct geomechanical models to investigate the effect of fractures on injection and storage.


CO2 geological storage Geostatistics Reservoir simulation Sensitivity analysis 


  1. Akbarabadi M, Piri M (2012) Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: an experimental study at reservoir conditions. Adv Water Resour 52:190–206. doi:10.1016/j.advwatres.2012.06.014 CrossRefGoogle Scholar
  2. Alabert FG, Modot V (1992) Stochastic models of reservoir heterogeneity: impact on connectivity and average permeabilities. Society of petroleum engineers paper 24893. doi:10.2118/24893-MS
  3. Ashraf M (2014) Geological storage of CO2: heterogeneity impact on the behavior of pressure. Int J Greenhouse Gas Control 28:356–368. doi:10.1016/j.ijggc.2014.06.018 CrossRefGoogle Scholar
  4. Bachu S (2001) Geological sequestration of anthropogenic carbon dioxide: applicability and current issues. In Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change, pp 285–303Google Scholar
  5. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media. Environ Geol 44:277–289. doi:10.1007/s00254-003-0762-9 CrossRefGoogle Scholar
  6. Bai B, Li X, Wu H, Wang Y, Liu M (2016) A methodology for designing maximum allowable wellhead pressure for CO2 injection: application to the Shenhua CCS demonstration project. Science and Technology, China, Greenhouse Gases. doi:10.1002/ghg.1640 Google Scholar
  7. Bennion B, Bachu S (2005) Relative permeability characteristics for supercritical CO2 displacing water in a variety of potential sequestration zones in the western canada sedimentary basin, 2005 SPE Annual technical conference and exhibition held in Dallas, Texas. doi:10.2118/95547-MS
  8. Bennion B, Bachu S (2008) Drainage and imbibition relative permeability relationships for supercritical CO2/brine and H2S/brine systems in intergranular sandstone, Carbonate, Shale, and Anhydrite Rocks, SPE-99326-PA. doi:10.2118/99326-PA
  9. Beucher H, Renard D (2016) Truncated Gaussian and derived methods. C R Geosci 348(7):510–519CrossRefGoogle Scholar
  10. Boisvert JB, Pyrcz MJ (2014) Conditioning 3D object based models to a large number of wells: a channel example. In Pardo-Igúzquiza E et al (eds) Mathematics of planet earth, lecture notes in earth system sciences. Springer-Verlag, Berlin. doi:10.1007/978-3-642-32408-6_126
  11. Caers J, Zhang T (2004) Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models, in Integration of outcrop and modern analogs in reservoir modeling. AAPG Mem 80:383–394Google Scholar
  12. Cao L, Sun W, Jiang X (2004) Analysis on Trias Liujiagou group’s fracture water in Yuci Xiyao Watershed. Sci Tech Inf Dev Econ 14(5):152–153 (in Chinese) Google Scholar
  13. Chen S, Liu H (1999) Sequence Stratigraphic framework and its characteristics of the carboniferous-Permian in North China. Acta Sedimentol Sin 17(1):63–70 (in Chinese) Google Scholar
  14. Cheng P, Bestehorn M, Firoozabadi A (2012) Effect of permeability anisotropy on buoyancy-driven flow for CO2 sequestration in saline aquifers. Water Res Res 48:W09539. doi:10.1029/2012WR011939 Google Scholar
  15. Corey AT (1954) The interrelation between gas and oil relative permeabilities. Prod Mon 19(1):38–41Google Scholar
  16. Dai S (2006) A discussion on the member partition of lower Triassic Liujiagou formation in the Shijiazhuang-Zhanghe area along the eastern foot of the Taihang Mountains. Coal Geol China 18(4):31–32 (in Chinese) Google Scholar
  17. Dai Z, Stauffer PH, Carey JW, Middleton RS, Lu Z, Jacobs JF, Hnottavange-Telleen K, Spangler LH (2014) Pre-site characterization risk analysis for commercial-scale carbon sequestration. Environ Sci Technol. doi:10.1021/es405468p Google Scholar
  18. Dai Z, Viswanathan H, Middleton R, Pan F, Ampomah W, Yang C, Jia W, Lee S, McPherson B, Balch R, Grigg R, White M (2016) CO2 Accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites. Environ Sci Technol 50:7546–7554CrossRefGoogle Scholar
  19. de Vries LM, Carrera J, Falivene O, Gratacós O, Slooten LJ (2009) Application of multiple point geostatistics to non-stationary images. Math Geosci 41(1):29–42CrossRefMATHGoogle Scholar
  20. Deutsch CV (2006) A sequential indicator simulation program for categorical variables with point and block data: BlockSIS. Comput Geosci 32:1669–1681CrossRefGoogle Scholar
  21. Deutsch C, Wang L (1996) Hierarchical object-based stochastic modeling of fluvial reservoirs. Math Geol 28:857. doi:10.1007/BF02066005 CrossRefGoogle Scholar
  22. Deveugle PEK, Jackson MD, Hampson GJ, Stewart J, Clough MD, Ehighebolo T, Farrell ME, Craig CS, Miller JK (2014) A comparative study of reservoir modeling techniques and their impact on predicted performance of fluivial-dominated deltaic reservoirs. AAPG Bull 98(4):729–763. doi:10.1306/08281313035 CrossRefGoogle Scholar
  23. Diao Y, Zhang S, Wang Y, Li X, Cao H (2014) Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS Demonstration Project as a case study. Environ Earth Sci 73:7571–7586. doi:10.1007/s12665-014-3928-8 CrossRefGoogle Scholar
  24. Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp TA, Hoier L (2011) Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Proc. doi:10.1016/j.egypro.2011.02.541 Google Scholar
  25. Emery X, Peláez M (2011) Assessing the accuracy of sequential Gaussian simulation and cosimulation. Comput Geosci 15:673–689. doi:10.1007/s10596-011-9235-5 CrossRefMATHGoogle Scholar
  26. Gao S, Wei N, Li X, Wang Y, Wang Q (2014) Cap rock CO2 breakthrough pressure measurement apparatus and application in Shenhua CCS project. Energy Proc 63:4766–4772. doi:10.1016/j.egypro.2014.11.507 CrossRefGoogle Scholar
  27. Gibbons K, Halvorsen C, Siring E (1992) Vertical and horizontal permeability variation within a sandstone reservoir based on minipermeameter measurements. In: Presented at the petroleum group of the geological society meeting ‘Minipermeametry in Reservoir Studies’, Edinburgh, 27 June 1991Google Scholar
  28. Guardiano F, Srivastava RM (1993) Multivariate geostatistics: beyond bivariate moments. In: Soares A (ed) Geostatistics Troia’92, vol 1. Kluwer Academic Publishers, Dordrecht, pp 133–144Google Scholar
  29. Haldorsen HH, Chang DW (1986) Notes on stochastic shales; from outcrop to simulation model. In: Lake LW, Caroll HB (eds) Reservoir characterization. Academic Press, London, pp 445–485CrossRefGoogle Scholar
  30. Haldorsen HH, Lake LW (1984) A new approach to shale management in field-scale models. Soc Petrol Eng J 24(04):447–457CrossRefGoogle Scholar
  31. Holden L, Hauge R, Skare Ø, Skorstad A (1998) Modeling of fluvial reservoirs with object models. Math Geol 30:473. doi:10.1023/A:1021769526425 CrossRefGoogle Scholar
  32. Hu LY, Chugunova T (2008) Multiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive review. Water Resour Res 44(11)Google Scholar
  33. Hu LY, Liu Y, Scheepens C, Shultz AW, Thompson RD (2014) Multiple-point simulation with an existing reservoir model as training image. Math Geosci 46:227–240. doi:10.1007/s11004-013-9488-8 MathSciNetCrossRefMATHGoogle Scholar
  34. If F, Frykman P (2005) Estimation of shape factors in fractured reservoirs. In: Dore AG, Vining BA (eds) Petroleum geology: north-west Europe and global perspectives—proceedings of the 6th petroleum geology conference, pp 545–550. Petroleum Geology Conferences Ltd. Published by the Geological Society, LondonGoogle Scholar
  35. Jiao Z, Surdam RC, Zhou L, Stauffer PH, Luo TA (2011) A feasibility study of geological CO2 sequestration in the Ordos Basin, China. Energy Proc 4:5982–5989. doi:10.1016/j.egypro.2011.02.601 CrossRefGoogle Scholar
  36. Jiao Z, Surdam RC, Zhou L, Wang Y (2013) A feasibility study of the integration of enhanced oil recovery (CO2 flooding) with CO2 storage in the mature oil fields of the Ordos Basin, China. In: Surdam (ed) Geological CO2 storage characterization: the key to deploying clean fossil energy technology. Springer Environmental Science and Engineering. doi:10.1016/j.egypro.2013.06.617
  37. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, New YorkGoogle Scholar
  38. Juanes R, Spiteri EJ, Orr FM, Blunt MJ (2006) Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res. doi:10.1029/2005WR004806 Google Scholar
  39. Kelkar M, Perez G (2002) Applied geostatistics for reservoir characterization. Society of Petroleum Engineers, RichardsonGoogle Scholar
  40. Kumar A, Ozah R, Noh M, Pope GA, Bryant S, Sepehrnoori K, Lake LW (2004) Reservoir simulation of CO2 storage in deep saline aquifers, SPE-89343-PA. doi:10.2118/89343-PA
  41. Lee KY (1986) Geology of the coal and petroleum deposits in the Ordos Basin, China. United States geological survey open-file report 86-278Google Scholar
  42. Lemonnier P, Bourbiaux B (2010) Simulation of naturally fractured reservoirs, state of the art, part 2, matrix-fracture transfers and typical features of numerical studies. Oil Gas Sci Technol Rev IFP 65(2):263–286. doi:10.2516/ogst/2009067 CrossRefGoogle Scholar
  43. Li Y (2014) An Uncertainty analysis of modeling geologic carbon sequestration in a naturally fractured reservoir at Teapot Dome, Wyoming. PhD dissertation, University of WyomingGoogle Scholar
  44. Li X, Wei N, Liu Y, Fang Z, Dahowski RT, Davidson CL (2009) CO2 point emission and geological storage capacity in China. Energy Proc 1:2793–2800. doi:10.1016/j.egypro.2009.02.051 CrossRefGoogle Scholar
  45. Li Q, Liu G, Liu X, Li X (2013) Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project. Int J Greenh Gas Control 17:504–514. doi:10.1016/j.ijggc.2013.06.005 CrossRefGoogle Scholar
  46. Li C, Zhang K, Wang Y, Guo C, Federico M (2015) Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China. Int J Greenhouse Gas Control. doi:10.1016/j.ijggc.2015.11.011 Google Scholar
  47. Li X, Li Q, Bai B, Wei N, Yuan W (2016) The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin, China. J Rock Mech Geotech Eng 8(6):948–966. doi:10.1016/j.jrmge.2016.07.002 CrossRefGoogle Scholar
  48. Liu H, Hou Z, Were P, Gou Y, Sun X (2013) Simulation of CO2 plume movement in multilayered saline formations through multilayer injection technology in the Ordos Basin. Environ Earth Sci, China. doi:10.1007/s12665-013-2839-4 Google Scholar
  49. Liu F, Zhu X, Li Y, Xu L, Niu X, Zhu S, Liang X, Xue M, He J (2015) Sedimentary characteristics and facies model of gravity flow deposits of Late Triassic Yanchang Formation in southwestern Ordos Basin, NW China. Petrol Explor Dev 42(5):633–664CrossRefGoogle Scholar
  50. Liu H, Hou Z, Were P, Gou Y, Sun X (2016) Numerical investigation of the formation displacement and caprock integrity in the Ordos Basin (China) during CO2 injection operation. J Petrol Sci Eng 147:168–180. doi:10.1016/j.petrol.2016.04.041 CrossRefGoogle Scholar
  51. Ma YZ, Seto A, Gomez E (2009) Depositional facies analysis and modeling of the Judy Creek reef complex of the Upper Devonian Swan Hills, Alberta, Canada. AAPG Bull 93(9):1235–1256. doi:10.1306/05220908103 CrossRefGoogle Scholar
  52. MacDonald AC, Aasen JO (1994) A prototype procedure for stochastic modeling of facies tract distribution in shoreface reservoirs. In: Yarus JM, Chambers RL (eds) Stochastic modeling and geostatistics: principles, methods, and case studies, AAPG computer applications in geology, vol 3, p. 94, ISBN: 0-89181-702-6Google Scholar
  53. Mariethoz G, Caers J (2015) Multiple-point geostatistics: stochastic modeling with training images. Wiley, New York. ISBN 978-1-118-66275-5Google Scholar
  54. Matheron G, Beucher H, de Fouquet C et al (1987) Conditional simulation of the geometry of fluvio-deltaic reservoirs. Presented at the SPE annual technical conference and exhibition, Dallas, TX, 27–30 September. SPE-16753-MS. doi:10.2118/16753-MS
  55. Mathieu G et al (1993) Reservoir heterogeneity in fluviatile Keuper facies: a subsurface and outcrop study. In: Eschard R, Doligez B (eds) Subsurface reservoir characterization from outcrop observations. Technip Publication, Paris, pp 145–160Google Scholar
  56. Meyer R, Krause FF (2006) Permeability anisotropy and heterogeneity of a sandstone reservoir analogue: an estuarine to shoreface depositional system in the Virgelle Member, Milk River Formation, Writing-on-Stone Provincial Park, Southern Alberta. Bull Canad Petrol Geol 54(4):301–318CrossRefGoogle Scholar
  57. Milliken WJ, Levy M, Strebelle SB, Zhang Y (2008) The effect of geologic parameters and uncertainties on subsurface flow: deepwater depositional systems. Soc Petrol Eng. doi:10.2118/114099-MS Google Scholar
  58. Moodie N, McPherson B, Lee S, Mandalaparty P (2014) Fundamental analysis of the impacts relative permeability has on CO2 saturation distribution and phase behavior. Transp Porous Med 108:233–255. doi:10.1007/s11242-014-0377-5 CrossRefGoogle Scholar
  59. Moodie N, Pan F, Jia W, McPherson B (2016) Impacts of relative permeability formulation on forecasts of CO2 phase behavior, phase distribution, and trapping mechanisms in a geologic carbon storage reservoir. Greenh Gas Sci Technol. doi:10.1002/ghg.1610 Google Scholar
  60. Nguyen MC, Zhang Y, Jun L, Li X, Bai B, Haiqing W, Wei N, Stauffer PH (2017) A geostatistical study in support of CO2 storage in deep saline aquifers of the Shenhua CCS project, Ordos Basin, China. Energy Proc. doi:10.1016/j.egypro.2017.03.1720 Google Scholar
  61. Nordbotten JM, Celia MA, Bachu S (2004) Injection and storage of CO2 in deep Saline aquifers: analytical solution for CO2 plume evolution during injection. Transp Porous Media 58:339–360. doi:10.1007/s11242-004-0670-9 CrossRefGoogle Scholar
  62. Obi EI, Blunt MJ (2006) Streamline-based simulation of carbon dioxide storage in a North Sea aquifer. Water Resour Res. doi:10.1029/2004WR003347 Google Scholar
  63. Pasala SM, Forster CB, Deo D, Evans JP (2013) Simulation of the impact of fault on CO2 injection into sandstone reservoirs. Geofluids 13:344–358. doi:10.1111/gfl.12029 CrossRefGoogle Scholar
  64. Pruess K, Xu T, Apps J, Garcia J (2001) Numerical modeling of aquifer disposal of CO2. In: SPE/EPA/DOE exploration and production environmental conference, San Antonio, TX, SPE-66537-MS. doi:10.2118/66537-MS
  65. Pyrcz MJ, Deutsch CV (2003) Stochastic surface modeling in mud rich, fine-grained turbidite lobes (abs.): AAPG annual meeting, May 11–14, Salt Lake City, Utah, Extended abstract,
  66. Pyrcz MJ, Deutsch CV (2014) Geostatistical reservoir modeling. Oxford University Press, Oxford. ISBN 978-0-19-973144-2Google Scholar
  67. Qiu X, Liu C, Mao G, Deng Y, Wang F, Wang J (2013) Late triassic tuff intervals in the Ordos Basin, Central China: their epositional, petrographic, geochemical characteristics and regional implications. J Asian Earth Sci 80:148–160. doi:10.1016/j.jseaes.2013.11.004 CrossRefGoogle Scholar
  68. Ravenne C, Beucher H (1988) Recent development in description of sedimentary bodies in a fluvio deltaic reservoir and their 3D conditional simulations. Presented at the SPE annual technical conference and exhibition, Houston, TE, 2–5 October 1988. SPE-18310-MS. doi:10.2118/18310-MS
  69. Schlumberger (2015) ECLIPSE technical description version 2015.2. CO2STORE optionGoogle Scholar
  70. Seifert D, Jensen JL (1999) Using sequential indicator simulation as a tool in reservoir description: issues and uncertainties. Math Geol 31:527. doi:10.1023/A:1007563907124 CrossRefGoogle Scholar
  71. Seifert D, Jensen JL (2000) Object and pixel-based reservoir modeling of a braided fluvial reservoir. Math Geol 32:581. doi:10.1023/A:1007562221431 CrossRefGoogle Scholar
  72. Sifuentes W, Blunt MJ, Giddins MA (2009) Modeling CO2 storage in aquifers: assessing the key contributors to uncertainty. SPE paper 123582, Offshore Europe, Aberdeen, UKGoogle Scholar
  73. Singh VP, Cavanagh A, Hansen H, Nazarian B, Iding M, Ringrose PS (2010) Reservoir modeling of CO2 plume behavior calibrated against monitoring data from Sleipner, Norway, SPE-134891-MS. doi:10.2118/134891-MS
  74. Soltanian MR, Amooie MA, Cole DR, Graham DE, Hosseini SA, Hovorka S, Pfiffner SM, Phelps TJ, Moortgat J (2016) Simulating the Cranfield geological carbon sequestration project with high-resolution static models and an accurate equation of state. Int J Greenhouse Gas Control 54:282–296. doi:10.1016/j.ijggc.2016.10.00 CrossRefGoogle Scholar
  75. Srivastava RM (1994) An overview of stochastic methods for reservoir characterization. In Yarus JM, Chambers RL (eds) Stochastic modeling and geostatistics: principles, methods, and case studies, AAPG computer applications in geology, vol 3, pp 3–16. ISBN: 0-89181-702-6Google Scholar
  76. Stalker L, Gent DV, NGL Project Team (2014) South West Hub CCS Project in Western Australia—characterization of a greenfield site. Energy Proc. doi:10.1016/j.egypro.2014.11.534 Google Scholar
  77. Stoyan D, Kendall WS, Mecke J (1987) Stochastic geometry and its applications. Wiley, New YorkMATHGoogle Scholar
  78. Strebelle S (2006) Sequential simulation for modeling geological structures from training images. In: Coburn TC, Yarus JM, Chambers RL (eds) Stochastic modeling and geostatistics: principles, methods and case studies—volume II: AAPG computer applications in geology vol 5, pp 139–149Google Scholar
  79. Strebelle S, Journel AG (2001) Reservoir modeling using multiple-point statistics. Society of petroleum engineers paper 71324Google Scholar
  80. Ulmishek G (1992) Geology and hydrocarbon resources of onshore basins in Eastern China. United States geological survey open-file report 93-4Google Scholar
  81. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am 44(5):892–898CrossRefGoogle Scholar
  82. van Heel AP, Boerrigter PM (2006) On the shape-factor in fractured reservoir simulation. SPE annual technical conference and exhibition, 24–27 September, San Antonio, TX, SPE-102471-MS. doi:10.2118/102471-MS
  83. Wang Y, Crandall D, Bruner K, Wei N, Gill M, Li X, Bromhal G (2013) Core and pore scale characterization of Liujiagou outcrop sandstone, Ordos Basin, China for CO2 aquifer storage. Energy Proc 37:5055–5062. doi:10.1016/j.egypro.2013.06.419 CrossRefGoogle Scholar
  84. Wang Y, Wei N, Wang Y, Chen M, Li X (2014) Preliminary cap rock integrity analysis for CO2 geological storage in saline aquifers based on geochemical tests in Shenhua CCS demonstration project, China. Energy Proc 63:2994–2999. doi:10.1016/j.egypro.2014.11.322 CrossRefGoogle Scholar
  85. Wei N, Gill M, Crandall D, McIntyre D, Wang Y, Bruner K, Li X, Bromhal G (2014) CO2 flooding properties of Liujiagou sandstone: influence of sub-core scale structure heterogeneity. Greenh Gases Sci Technol 4:400–418. doi:10.1002/ghg.14 CrossRefGoogle Scholar
  86. White JA, Chiaramonte L, Ezzedine S, Foxall W, Hao Y, Ramirez A, McNab W (2014) Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project. Proc Natl Acad Sci 111(24):8747–8752. doi:10.1073/pnas.1316465111 CrossRefGoogle Scholar
  87. Wu X (2013) Carbon dioxide capture and geological storage: the first massive exploration. China Science Press, BeijingGoogle Scholar
  88. Xie Y, Cullick SA, Deutsch CV (2001) Surface-geometry and trend modeling for integration of stratigraphic data in reservoir models, SPE Western Regional Meeting, 26–30 March, Bakersfield. doi:10.2118/68817-MS
  89. Xie J, Zhang K, Hu L, Pavelic P, Wang Y, Chen M (2015a) Field-based simulation of a demonstration site for carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin. Hydrogeol J, China. doi:10.1007/s10040-015-1267-9 Google Scholar
  90. Xie J, Zhang K, Hu L, Wang Y, Chen M (2015b) Understanding the carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin with numerical simulations. Greenh Gases Sci Technol. doi:10.1002/ghg.1499 Google Scholar
  91. Xie J, Zhang K, Li C, Wang Y (2016) Preliminary study on the CO2 injectivity and storage capacity of low-permeability saline aquifers at Chenjiacun site in the Ordos Basin. Int J Greenhouse Gas Control 52:215–230. doi:10.1016/j.ijggc.2016.07.016 CrossRefGoogle Scholar
  92. Yang H, Fu S, Wei X (2004) Geology and exploration of oil and gas in the Ordos Basin. Appl Geophys 1(2):103–109CrossRefGoogle Scholar
  93. Yoshida N, Levine JS, Stauffer PH (2016) Investigation of uncertainty in CO2 reservoir models: a sensitivity analysis of relative permeability parameter values. Int J Greenhouse Gas Control 49(2016):161–178. doi:10.1016/j.ijggc.2016.03.008 CrossRefGoogle Scholar
  94. Zeng M, Ouyang S, Zhang Y, Shi H (2014) CCS technology development in China: status, problems and countermeasures—based on SWOT analysis. Renew Sustain Energy Rev 39:604–616. doi:10.1016/j.rser.2014.07.037 CrossRefGoogle Scholar
  95. Zhang Z, Sun K, Yin J (1997) Sedimentology and sequence stratigraphy of the Shanxi Formation (Lower Permian) in the northwestern Ordos Basin, China: an alternative sequence model for fluvial strata. Sediment Geol 112:123–136CrossRefGoogle Scholar
  96. Zhang X, Pyrcz MJ, Deutsch CV (2009) Stochastic surface modeling of deepwater depositional systems for improved reservoir models. J Petrol Sci Eng 68:118–134. doi:10.1016/j.petrol.2009.06.019 CrossRefGoogle Scholar
  97. Zhang K, Xie J, Li C, Hua L, Wu X, Wang Y (2016) A full chain CCS demonstration project in northeast Ordos Basin, China: operational experience and challenges. Int J Greenhouse Gas Control 50:218–230. doi:10.1016/j.ijggc.2016.04.025 CrossRefGoogle Scholar
  98. Zhao J, Mountney NP, Liu C, Qu H, Lin J (2015) Outcrop architecture of a fluvio-lacustrine succession: upper Triassic Yanchang Formation, Ordos Basin, China. Mar Petrol Geol 68(Part A):394–413. doi:10.1016/j.marpetgeo.2015.09.001 CrossRefGoogle Scholar
  99. Zhu Q, Zuo D, Zhang S, Zhang Y, Wang Y, Wang L (2015) Simulation of geomechanical responses of reservoirs induced by CO2 multilayer injection in the Shenhua CCS project, China. Int J Greenh Gas Control 42:405–414. doi:10.1016/j.ijggc.2015.08.017 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Geology and GeophysicsUniversity of WyomingLaramieUSA
  2. 2.Schlumberger Software Integrated SolutionsHoustonUSA
  3. 3.Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina
  4. 4.Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations