Soil gas dynamics monitoring at a CO2-EOR site for leakage detection

  • Changbing Yang
  • Katherine D. Romanak
  • Robert C. Reedy
  • Susan D. Hovorka
  • Ramon H. Trevino
Original Article


A comprehensive soil gas monitoring program was conducted at a CO2-enhanced oil recovery site in western Mississippi to validate near-surface monitoring technologies for CO2 leakage detection. The program included three main monitoring technologies: (1) using commercial sensors for real-time in situ monitoring of atmospheric and soil CO2 concentrations and of environmental parameters; (2) intermittent soil CO2 flux measurements with a portable CO2 flux survey system; and (3) on-site soil gas composition measurements in semipermanent soil gas wells with a portable gas chromatograph. Atmospheric and soil CO2 concentrations measured with the commercial sensors vary from 340 ppm in the atmosphere to ~12% (volume percentage) in soil at a depth of 3 m showed variations at different time scales over a period of 214 days. Atmospheric and soil CO2 concentrations also showed dependence on environmental parameters. Average CO2 flux measurements at the site were ~6 ± 5.2 g/m2/day, comparable to soil CO2 flux measurements reported at other sites. Grid soil CO2 flux measurements on the pad identified a point with CO2 flux up to 5200 ± 4000 g/m2/day, likely due to a focused leak from the underlying pipeline. Soil gas composition monitoring in the soil gas wells fell into two groups based on the relationship of the soil gas compositions, likely resulted from different biogeochemical processes. The field results provided valuable information on soil gas dynamics for validating numerical models of soil gas transport in the vadose zone and designing and implementing near-surface monitoring programs at other geological carbon sequestration sites.


Geological carbon sequestration CO2 leakage detection Soil gas monitoring CO2 concentration Soil gas composition 



This study was funded by the U.S. Department of Energy National Energy Technology Laboratory under the project of DE-FC26-05NT42590 through the Southeastern Regional Carbon Sequestration Partnership’s Phase III research project, and managed by the Southern States Energy Board. We appreciate guest editors, Drs. Soltanian and Dai, and anonymous reviewers for their comments which improve this manuscript.


  1. Beaubien SE, Jones DG, Gal F, Barkwith AKAP, Braibant G, Baubron JC, Ciotoli G, Graziani S, Lister TR, Lombardi S, Michel K, Quattrocchi F, Strutt MH (2013) Monitoring of near-surface gas geochemistry at the Weyburn, Canada, CO2-EOR site, 2001–2011. Int J Greenh Gas Control 16(Supplement 1):S236–S262CrossRefGoogle Scholar
  2. Board MOG (1966) Cranfield field, Cranfield unit, Basal Tuscaloosa reservoir. Adams and Franklin Counties, Mississippi, pp 42–58Google Scholar
  3. Bowden AR, Pershke DF, Chalaturnyk R (2013) Geosphere risk assessment conducted for the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project. Int J Greenh Gas Control 16(Supplement 1):S276–S290CrossRefGoogle Scholar
  4. Cohen G, Loisy C, Laveuf C, Le Roux O, Delaplace P, Magnier C, Rouchon V, Garcia B, Cerepi A (2013) The CO2-Vadose project: experimental study and modelling of CO2 induced leakage and tracers associated in the carbonate vadose zone. Int J Greenh Gas Control 14:128–140CrossRefGoogle Scholar
  5. Cortis A, Oldenburg CM, Benson SM (2008) The role of optimality in characterizing CO2 seepage from geologic carbon sequestration sites. Int J Greenh Gas Control 2:640–652CrossRefGoogle Scholar
  6. Dai Z, Keating E, Bacon D, Viswanathan H, Stauffer P, Jordan A, Pawar R (2014a) Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site. Sci Rep 4:1–7Google Scholar
  7. Dai Z, Keating E, Pawar R, Bacon D, Viswanathan H, Zheng L, Carroll S (2014b) Risk assessment for shallow groundwater resources at a potential carbon sequestration site. Sci Rep 4:4006CrossRefGoogle Scholar
  8. DOE/NETL (2009) Monitoring, verification, and accounting of CO2 stored in deep geologic formations. National Energy Technology Laboratory, p 132Google Scholar
  9. Garcia B, Delaplace P, Rouchon V, Magnier C, Loisy C, Cohen G, Laveuf C, Le Roux O, Cerepi A (2013) The CO2-vadose project: numerical modeling to perform a geochemical monitoring methodology and baseline performance assessment for various geochemical variables (gas flux, gas composition, stable isotopes and noble gases) in the carbonate vadose zone. Int J Greenh Gas Control 14:247–258CrossRefGoogle Scholar
  10. Gershenzon NI, Soltanian M, Ritzi RW Jr, Dominic DF (2014) Influence of Small Scale Heterogeneity on CO2 Trapping Processes in Deep Saline Aquifers. Energy Procedia 59:166–173CrossRefGoogle Scholar
  11. Gershenzon NI, Ritzi RW, Dominic DF, Soltanian M, Mehnert E, Okwen RT (2015) Influence of small-scale fluvial architecture on CO2 trapping processes in deep brine reservoirs. Water Resour Res 51:8240–8256CrossRefGoogle Scholar
  12. Hingst MC (2013) Geochemical effects of elevated methane and carbon dioxide in near-surface sediments above an EOR/CCUS site, Dissertation, The University of Texas at AustinGoogle Scholar
  13. Hovorka SD, Meckel TA, Trevino RH, Lu J, Nicot J-P, Choi J-W, Freeman D, Cook P, Daley TM, Ajo-Franklin JB, Freifeild BM, Doughty C, Carrigan CR, Brecque DL, Kharaka YK, Thordsen JJ, Phelps TJ, Yang C, Romanak KD, Zhang T, Holt RM, Lindler JS, Butsch RJ (2011) Monitoring a large volume CO2 injection: year two results from SECARB project at Denbury’s Cranfield, Mississippi, USA. Energy Procedia 4:3478–3485CrossRefGoogle Scholar
  14. Hovorka SD, Meckel TA, Treviño RH (2013) Monitoring a large-volume injection at Cranfield, Mississippi—project design and recommendations. Int J Greenh Gas Control 18:345–360CrossRefGoogle Scholar
  15. Islam A, Sun AY, Yang C (2016) Reactive transport modeling of the enhancement of density-driven CO(2) convective mixing in carbonate aquifers and its potential implication on geological carbon sequestration. Sci Rep 6:24768CrossRefGoogle Scholar
  16. Lewicki J, Hilley G, Dobeck L, Spangler L (2010) Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release. Environ Earth Sci 60:285–297CrossRefGoogle Scholar
  17. Litynski J, Plasynski S, Spangler L, Finley R, Steadman E, Ball D, Nemeth KJ, McPherson B, Myer L (2009) U.S. Department of Energy’s regional carbon sequestration partnership program: overview. Energy Procedia 1:3959–3967CrossRefGoogle Scholar
  18. Mickler PJ, Yang C, Scanlon BR, Reedy R, Lu J (2013) Potential impacts of CO2 leakage on groundwater chemistry from laboratory batch experiments and field push–pull tests. Environ Sci Technol 47:10694–10702Google Scholar
  19. Oldenburg C, Lewicki J, Dobeck L, Spangler L (2010) Modeling gas transport in the shallow subsurface during the ZERT CO2 release test. Transp Porous Med 82:77–92CrossRefGoogle Scholar
  20. Rodosta T, Litynski J, Plasynski S, Spangler L, Finley R, Steadman E, Ball D, Hill G, McPherson B, Burton E, Vikara D (2011) US Department of Energy’s regional carbon sequestration partnership initiative: update on validation and development phases. Energy Procedia 4:3457–3464CrossRefGoogle Scholar
  21. Romanak KD, Bennett PC, Yang C, Hovorka SD (2012) Process-based approach to CO2 leakage detection by vadose zone gas monitoring at geologic CO2 storage sites. Geophys Res Lett 39:L15405CrossRefGoogle Scholar
  22. Romanak K, Sherk GW, Hovorka S, Yang C (2013) Assessment of alleged CO2 leakage at the Kerr farm using a simple process-based soil gas technique: implications for carbon capture, utilization, and storage (CCUS) monitoring. Energy Procedia 37:4242–4248CrossRefGoogle Scholar
  23. Romanak KD, Wolaver B, Yang C, Sherk GW, Dale J, Dobeck LM, Spangler LH (2014) Process-based soil gas leakage assessment at the Kerr farm: comparison of results to leakage proxies at ZERT and Mt. Etna. Int J Greenh Gas Control 30:42–57CrossRefGoogle Scholar
  24. Rostron B, Chalaturnyk R, Gardner C, Hawkes C, Johnson J, White D, Whittaker S (2009) 8+ years of characterization, monitoring, and risk assessment at the International Energy Agency Greenhouse Gas Weyburn-Midale CO2 monitoring and storage project, Saskatchewan, Canada. J Geochem Explor 101:86CrossRefGoogle Scholar
  25. Schacht U, Jenkins C (2014) Soil gas monitoring of the Otway Project demonstration site in SE Victoria, Australia. Int J Greenh Gas Control 24:14–29CrossRefGoogle Scholar
  26. Schloemer S, Furche M, Dumke I, Poggenburg J, Bahr A, Seeger C, Vidal A, Faber E (2013) A review of continuous soil gas monitoring related to CCS—technical advances and lessons learned. Appl Geochem 30:148–160CrossRefGoogle Scholar
  27. Schütze C, Dietrich P, Sauer U (2013) Diagnostic monitoring to identify preferential near-surface structures for CO2 degassing into the atmosphere: tools for investigations at different spatial scales validated at a natural analogue site. Int J Greenh Gas Control 18:285–295CrossRefGoogle Scholar
  28. Soltanian MR, Amooie MA, Cole DR, Graham DE, Hosseini SA, Hovorka S, Pfiffner SM, Phelps TJ, Moortgat J (2016a) Simulating the Cranfield geological carbon sequestration project with high-resolution static models and an accurate equation of state. Int J Greenh Gas Control 54(Part 1):282–296CrossRefGoogle Scholar
  29. Soltanian MR, Amooie MA, Dai Z, Cole D, Moortgat J (2016b) Critical dynamics of gravito-convective mixing in geological carbon sequestration. Sci Rep 6:35921CrossRefGoogle Scholar
  30. Yang C, Romanak K, Holt RM, Lindner J, Smith L, Roecker F, Xia Y, Rickerts J, Horvorka S (2012) Large volume of CO2 injection at the Cranfield, early field test of the SECARB Phase III: near-surface monitoring, 2012 Carbon Management Technology Conference, Orlando, Florida, USA, p 10Google Scholar
  31. Yang C, Mickler PJ, Reedy R, Scanlon BR, Romanak KD, Nicot J-P, Hovorka SD, Trevino RH, Larson T (2013a) Single-well push–pull test for assessing potential impacts of CO2 leakage on groundwater quality in a shallow Gulf Coast aquifer in Cranfield, Mississippi. Int J Greenh Gas Control 18:375–387CrossRefGoogle Scholar
  32. Yang C, Romanak K, Hovorka S, Holt RM, Lindner J, Trevino R (2013b) Near-surface monitoring of large-volume CO2 injection at cranfield: early field test of SECARB Phase III. SPE J 18:486–494CrossRefGoogle Scholar
  33. Yang C, Romanak K, Hovorka S, Triveno R (2013c) Modeling CO2 release experiment in the shallow subsurface and sensitivity analysis. Environ Eng Geosci 19:207–220CrossRefGoogle Scholar
  34. Yang C, Dai Z, Romanak KD, Hovorka SD, Treviño RH (2014a) Inverse modeling of water–rock–CO2 batch experiments: potential impacts on groundwater resources at carbon sequestration sites. Environ Sci Technol 48:2798–2806CrossRefGoogle Scholar
  35. Yang C, Hovorka S, Young MH, Trevino R (2014b) Geochemical sensitivity to CO2 leakage: detection in potable aquifers at carbon sequestration sites. Greenh Gases Sci Technol 4:384–399CrossRefGoogle Scholar
  36. Yang C, Hovorka SD, Delgado-Alonso J, Mickler PJ, Treviño RH, Phillips S (2014c) Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test. Environ Sci Technol 48:14031–14040CrossRefGoogle Scholar
  37. Yang C, Treviño RH, Zhang T, Romanak KD, Wallace K, Lu J, Mickler PJ, Hovorka SD (2014d) Regional assessment of CO2–solubility trapping potential: a case study of the coastal and offshore Texas miocene interval. Environ Sci Technol 48:8275–8282CrossRefGoogle Scholar
  38. Yang C, Hovorka SD, Treviño RH, Delgado-Alonso J (2015) Integrated framework for assessing impacts of CO2 leakage on groundwater quality and monitoring-network efficiency: case study at a CO2 enhanced oil recovery site. Environ Sci Technol 49:8887–8898CrossRefGoogle Scholar
  39. Zhou X, Apple ME, Dobeck LM, Cunningham AB, Spangler LH (2013) Observed response of soil O2 concentration to leaked CO2 from an engineered CO2 leakage experiment. Int J. Greenh Gas Control 16:116–128CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Changbing Yang
    • 1
  • Katherine D. Romanak
    • 1
  • Robert C. Reedy
    • 1
  • Susan D. Hovorka
    • 1
  • Ramon H. Trevino
    • 1
  1. 1.Bureau of Economic GeologyThe University of Texas at AustinAustinUSA

Personalised recommendations