Skip to main content

siRNA and Ovarian Cancer

Abstract

RNA interference (RNAi) is an emerging field of genetic intervention of the new millennium for incurable disease conditions where conventional treatment fails. MicroRNA (miRNA) and small interfering RNA (siRNA) are two components of such RNAi. Exogenous double-stranded siRNA targets specific mRNA and prevents anomalous gene expression producing such disease conditions. Ovarian cancer is such a disease which can hardly be treated by conventional therapy due to recurrence and drug resistance. Hence, siRNA may pose an attractive alternative to deal with recurrent and refractory ovarian cancer because of its simple straightforward mechanism of knocking down faulty genes responsible for its dismal prognosis. With success already at hand in rare genetic disease it seems worthwhile that development so far of such therapy in ovarian cancer is critically analysed, hence this review.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.

    Article  Google Scholar 

  2. 2.

    Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer Lancet. 2014;384:1376–88.

    PubMed  Google Scholar 

  3. 3.

    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11. https://doi.org/10.1038/35888.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8. https://doi.org/10.1038/35078107.

    CAS  Article  Google Scholar 

  5. 5.

    Lee RC, Feinbaum RL, Ambros V. The C elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    CAS  Article  Google Scholar 

  6. 6.

    Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C elegans. Genes Dev. 2001. https://doi.org/10.1101/gad.927801.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA Versus miRNA as Therapeutics for Gene Silencing. Molecular Therapy-Nucleic Acids. 2015;4: e252. https://doi.org/10.1038/mtna.2015.23.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mack GS. MicroRNA gets down to business. Nat Biotech. 2007;25:631–8. https://doi.org/10.1038/nbt0607-631.

    CAS  Article  Google Scholar 

  9. 9.

    Landen CN, Merritt WM, Mangala LS, Sanguino AM, Bucana C, et al. Intraperitoneal delivery of liposomal siRNA for therapy of advanced ovarian cancer. Can Biol Ther. 2006;5(12):1708–13. https://doi.org/10.4161/cbt.5.12.3468.

    CAS  Article  Google Scholar 

  10. 10.

    Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87:108–19. https://doi.org/10.1016/j.addr.2015.01.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Farra R, Maruna M, Perrone F, Grassi M, et al. Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics. 2019;11(10):547. https://doi.org/10.3390/pharmaceutics11100547.

    CAS  Article  PubMed Central  Google Scholar 

  12. 12.

    van den Brand D, Mertens V, Massuger LFAG, Brock R. siRNA in ovarian cancer - Delivery strategies and targets for therapy. J Control Release. 2018;10(283):45–58. https://doi.org/10.1016/j.jconrel.2018.05.012.

    CAS  Article  Google Scholar 

  13. 13.

    Cheung HW, Cowley GS, Weir BA, Boehm JS, et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage -specific dependencies in ovarian cancer. Proc Natl Acad Sci U S A. 2011;108(30):12372–7. https://doi.org/10.1073/pnas.1109363108.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Ren Y, Cheung HW, von Maltzhan G, Agrawal A, et al. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci Transl Med. 2010. https://doi.org/10.1126/scitranslmed.3003778.

    Article  Google Scholar 

  15. 15.

    Goldberg MS, et al. Nanoparticle mediated delivery of siRNA targeting Parp1 extends survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells. Proc Natl Acad Sci USA. 2011;108:745–50.

    CAS  Article  Google Scholar 

  16. 16.

    Shahzad MM, Mangala LS, Han HD, Lu C, et al. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia. 2011;13(4):309–19. https://doi.org/10.1593/neo.101372.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Xiao F, Connolly DC. FAK mediates STAT3 activation, migration and invasion in ovarian carcinoma cells (Abs). Cancer Research. 2014. https://doi.org/10.1158/1538-7445.AM2014-2095.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    He C, Liu D, Lin W. Self-assembled nanoscale coordination polymers carrying siRNAs and cisplatin for effective treatment of resistant ovarian cancer. Biomaterials. 2015;36:124–33. https://doi.org/10.1016/j.biomaterials.2014.09.017.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Salzano G, Navarro G, Trivedi MS, De Rosa G, Torchilin VP. Multifunctional polymeric micelles co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol Cancer Ther. 2015;14(4):1075–84. https://doi.org/10.1158/1535-7163.MCT-14-0556.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Matsui H, Sato Y, Hatakeyama H, Akita H, Harashima H. Size-dependent specific targeting and efficient gene silencing in peritoneal macrophages using a pH-sensitive cationic liposomal siRNA carrier. Int J Pharm. 2015;495(1):171–8. https://doi.org/10.1016/j.ijpharm.2015.08.044.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Zhao YC, Zhang L, Feng SS, Hong L, Zheng HL, et al. Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome. Int J Nanomedicine. 2016;11:5485–96. https://doi.org/10.2147/IJN.S115367.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zou S, Cao N, Cheng D, Zheng R, et al. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin. Int J Nanomedicine. 2012;7:3823–35. https://doi.org/10.2147/IJN.S29328.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Li J, Cheng D, Yin T, Chen W, et al. Copolymer of poly (ethylene glycol) and poly(L-lysine) grafting polyethylenimine through a reducible disulfide linkage for siRNA delivery. Nanoscale. 2014;6(3):1732–40. https://doi.org/10.1039/c3nr05024f.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Chen W, Yuan Y, Cheng D, Chen J, et al. Co-delivery of doxorubicin and siRNA with reduction and pH dually sensitive nanocarrier for synergistic cancer therapy. Small. 2014;10(13):2678–87. https://doi.org/10.1002/smll.201303951.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Talekar M, Ouyang Q, Goldberg MS, Amiji MM. Cosilencing of PKM-2 and MDR-1 Sensitizes Multidrug-Resistant Ovarian Cancer Cells to Paclitaxel in a Murine Model of Ovarian Cancer. Mol Cancer Ther. 2015;14(7):1521–31. https://doi.org/10.1158/1535-7163.MCT-15-0100.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Yang X, Iyer AK, Singh A, Milane L, et al. Cluster of Differentiation 44 Targeted Hyaluronic Acid Based Nanoparticles for MDR1 siRNA Delivery to Overcome Drug Resistance in Ovarian Cancer. Pharm Res. 2015;32(6):2097–109. https://doi.org/10.1007/s11095-014-1602-1.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Teo PY, Yang C, Whilding LM, Parente-Pereira AC, et al. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Adv Healthc Mater. 2015;4(8):1180–9. https://doi.org/10.1002/adhm.201500089.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Jones SK, Lizzio V, Merkel OM. Folate receptor targeted delivery of sirna and paclitaxel to ovarian cancer cells via folate conjugated triblock copolymer to overcome TLR4 driven chemotherapy resistance. Biomacromol. 2016;17(1):76–87. https://doi.org/10.1021/acs.biomac.5b01189.

    CAS  Article  Google Scholar 

  29. 29.

    Chen Y, Xu M, Guo Y, Tu K, Wu W, et al. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle. Nanotechnology. 2017;28(2): 025101. https://doi.org/10.1088/0957-4484/28/2/025101.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Satpathy M, Mezencev R, Wang L, McDonald JF. Targeted in vivo delivery of EGFR siRNA inhibits ovarian cancer growth and enhances drug sensitivity. Sci Rep. 2016;6:36518. https://doi.org/10.1038/srep36518.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kobayashi E, Iyer AK, Hornicek FJ, Amiji MM, Duan Z. Lipid-functionalized dextran nanosystems to overcome multidrug resistance in cancer: a pilot study. Clin Orthop Relat Res. 2013;471(3):915–25. https://doi.org/10.1007/s11999-012-2610-2.

    Article  PubMed  Google Scholar 

  32. 32.

    Li TS, Yawata T, Honke K. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly (ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Eur J Pharm Sci. 2014;52:48–61. https://doi.org/10.1016/j.ejps.2013.10.011.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Ji AM, Su D, Che O, Li WS, Sun L, et al. Functional gene silencing mediated by chitosan/siRNA nanocomplexes. Nanotechnology. 2009;20(40): 405103. https://doi.org/10.1088/0957-4484/20/40/405103.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gharpure KM, Chu KS, Bowerman CJ, Miyake T, et al. Metronomic docetaxel in PRINT nanoparticles and EZH2 silencing have synergistic antitumor effect in ovarian cancer. Mol Cancer Ther. 2014;13(7):1750–7. https://doi.org/10.1158/1535-7163.MCT-13-0930.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yu C, Ding B, Zhang X, Deng X, Deng K, et al. Targeted iron nanoparticles with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in vitro and in vivo. Biomaterials. 2018;155:112–23. https://doi.org/10.1016/j.biomaterials.2017.11.014.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Babu A, Wang Q, Muralidharan R, Shanker M, et al. Chitosan coated polylactic acid nanoparticle-mediated combinatorial delivery of cisplatin and siRNA/Plasmid DNA chemosensitizes cisplatin-resistant human ovarian cancer cells. Mol Pharm. 2014;11(8):2720–33. https://doi.org/10.1021/mp500259e.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Shah V, Taratula O, Garbuzenko OB, Taratula OR, et al. Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug. Clin Cancer Res. 2013;19(22):6193–204. https://doi.org/10.1158/1078-0432.CCR-13-1536.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Kala S, Mak AS, Liu X, Posocco P, Pricl S, et al. Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer. J Med Chem. 2014;57(6):2634–42. https://doi.org/10.1021/jm401907z.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Ma J, Kala S, Yung S, Chan TM, Cao Y, et al. Blocking stemness and metastatic properties of ovarian cancer cells by Targeting p70S6K with dendrimer nanovector-based sirna delivery. Mol Ther. 2018;26(1):70–83. https://doi.org/10.1016/j.ymthe.2017.11.006.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Engelberth SA, Hempel N, Bergkvist M. Chemically modified dendritic starch: a novel nanomaterial for siRNA Delivery. Bioconjug Chem. 2015;26(8):1766–74. https://doi.org/10.1021/acs.bioconjchem.5b00313.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Roberts CM, Shahin SA, Wen W, Finlay JB, Dong J, et al. Nanoparticle delivery of siRNA against TWIST to reduce drug resistance and tumor growth in ovarian cancer models. Nanomedicine. 2017;13(3):965–76. https://doi.org/10.1016/j.nano.2016.11.010.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Huang YH, Peng W, Furuuchi N, Gerhart J, Rhodes K, et al. Delivery of therapeutics targeting the mrna-binding protein HuR using 3DNA nanocarriers suppresses ovarian tumor growth. Cancer Res. 2016;76(6):1549–59. https://doi.org/10.1158/0008-5472.CAN-15-2073.Erratum.In:CancerRes.2016Jun1;76(11):3437.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Chen Y, Wang X, Liu T, Zhang DS, et al. Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. Int J Nanomedicine. 2015;10:2579–94. https://doi.org/10.2147/IJN.S78774.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Shen H, Rodriguez-Aguayo C, Xu R, Gonzalez-Villasana V, Mai J, et al. Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery. Clin Cancer Res. 2013;19(7):1806–15. https://doi.org/10.1158/1078-0432.CCR-12-2764.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Florinas S, Kim J, Nam K, Janát-Amsbury MM, Kim SW. Ultrasound-assisted siRNA delivery via arginine-grafted bioreducible polymer and microbubbles targeting VEGF for ovarian cancer treatment. J Control Release. 2014;183:1–8. https://doi.org/10.1016/j.jconrel.2014.03.025.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Florinas S, Nam HY, Kim SW. Enhanced siRNA delivery using a combination of an arginine-grafted bioreducible polymer, ultrasound, and microbubbles in cancer cells. Mol Pharm. 2013;10(5):2021–30. https://doi.org/10.1021/mp400048p.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Xin Y, Huang M, Guo WW, Huang Q, et al. Nano-based delivery of RNAi in cancer therapy. Mol Cancer. 2017;16(1):134. https://doi.org/10.1186/s12943-017-0683-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Ren Y, Cheung HW, von Maltzhan G, Agrawal A, et al. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci Transl Med. 2012. https://doi.org/10.1126/scitranslmed.3003778.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kotcherlakota R, Srinivasan DJ, Mukherjee S, Haroon MM, Dar GH, et al. Engineered fusion protein-loaded gold nanocarriers for targeted co-delivery of doxorubicin and erbB2-siRNA in human epidermal growth factor receptor-2+ ovarian cancer. J Mater Chem B. 2017;5(34):7082–98. https://doi.org/10.1039/c7tb01587a.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–8.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lage H, Krühn A. Bacterial delivery of RNAi effectors: transkingdom RNAi. J Vis Exp. 2010;42:2099. https://doi.org/10.3791/2099.

    CAS  Article  Google Scholar 

  52. 52.

    Hu Q, Li W, Hu X, Hu Q, Shen J, et al. Synergistic treatment of ovarian cancer by co-delivery of survivin shRNA and paclitaxel via supramolecular micellar assembly. Biomaterials. 2012;33(27):6580–91. https://doi.org/10.1016/j.biomaterials.2012.05.060.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Kristen AV, Ajroud-Driss S, Conceição I, Gorevic P, et al. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag. 2019;9(1):5–23. https://doi.org/10.2217/nmt-2018-0033.

    Article  PubMed  Google Scholar 

  54. 54.

    Beauchamp TL, Childress JF. Principles of biomedical ethics. 5th ed. Oxford: Oxford University Press; 2001.

    Google Scholar 

  55. 55.

    Ebbesen M, Jensen TG, Andersen S, Pedersen FS. Ethical perspectives on RNA interference therapeutics. Int J Med Sci. 2008J;5(3):159–68. https://doi.org/10.7150/ijms.5.159.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Oosenbrug T, van de Graaff MJ, Ressing ME, van Kasteren SI. Chemical Tools for Studying TLR Signaling Dynamics. Cell Chem Biol. 2017;24(7):801–12. https://doi.org/10.1016/j.chembiol.2017.05.022.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Pirher N, Pohar J, Manček-Keber M, Benčina M, Jerala R. Activation of cell membrane-localized Toll-like receptor 3 by siRNA. Immunol Lett. 2017;189:55–63. https://doi.org/10.1016/j.imlet.2017.03.019.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Mansoori B, Mohammadi A, Shir Jang S, Baradaran B. Mechanisms of immune system activation in mammalians by small interfering RNA (siRNA). Artif Cells Nanomed Biotechnol. 2016;44(7):1589–96. https://doi.org/10.3109/21691401.2015.1102738.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 2003;31(2):589–95. https://doi.org/10.1093/nar/gkg147.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther. 2012;20(3):513–24. https://doi.org/10.1038/mt.2011.294.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chinmoy K. Bose.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent of Publication

I consent to publish my submitted manuscript entitled “siRNA and ovarian cancer”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bose, C.K. siRNA and Ovarian Cancer. Indian J Gynecol Oncolog 19, 85 (2021). https://doi.org/10.1007/s40944-021-00583-z

Download citation

Keywords

  • RNAi
  • siRNA
  • Ovarian cancer
  • Nanoparticle