Advertisement

Glass Structures & Engineering

, Volume 4, Issue 1, pp 117–125 | Cite as

Determination of the engine power for quenching of glass by forced convection: simplified model and experimental validation of residual stress levels

  • N. PourmoghaddamEmail author
  • J. Schneider
Research paper
  • 151 Downloads

Abstract

This work presents a simplified model for the determination of the engine power as a function of the residual stress using quench parameters by forced convection and introduces the necessary empirical equations of integral heat and mass transfer coefficients suggested by Martin (1977). For a residual stress dependent production of thermally tempered glasses, float glasses were thermally tempered due to heat treatment of the glass panes with different heat transfer coefficients. In the method presented, quench parameters for determining the engine power required to reach the target residual stresses are taken into account. The plausibility of the model is checked on the basis of experimental data.

Keywords

Tempered glass Residual stress Quenching Heat transfer coefficient Cooling air velocity Engine power 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aronen, A., Karvinen, R.: Effect of glass temperature before cooling and cooling rate on residual stresses in tempering. In: Glass Structures and Engineering, no. Rantala 2015 (2017)Google Scholar
  2. Aronen, A.: Modelling of Deformations and Stresses in Glass Tempering. Ph.D. dissertation (2012)Google Scholar
  3. Bernard, F., Daudeville, L., René, G.: Prediction of residual stresses near joints in tempered glass plates| Calcul des contraintes résiduelles dans les zones d’assemblage de plaques en verre trempé. Mec. Ind. 6(1), 55–64 (2005)Google Scholar
  4. Daudeville, L., Bernard, F., Gy, R.: Residual stresses near holes in tempered glass plates. Mater. Sci. Forum 404–407, 43–48 (2002)CrossRefGoogle Scholar
  5. Fineberg, J.: The dynamics of rapidly moving tensile cracks in brittle amorphous material. In: Shukla, A. (ed.) Dynamic Fracture Mechanics, pp. 104–146. World Scientific, Singapore (2006).  https://doi.org/10.1142/9789812773326_0003 CrossRefGoogle Scholar
  6. Laufs, W., Sedlacek, G.: Stress distribution in thermally tempered glass panes near the edges, corners and holes. Part 1. Temperature distributions during the tempering process of glass panes. Glass Sci. Technol. Frankf. Main 72(1), 7–14 (1999)Google Scholar
  7. Laufs, W., Sedlacek, G.: Stress distribution in thermally tempered glass panes near the edges, corners and holes: Part 2. Distribution of thermal stresses. Glass Sci. Technol. Frankf. Main 72(2), 42–48 (1999)Google Scholar
  8. Martin, H.: Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces. In: Hartnett J. P. & Irvine T. F. (eds.) Advances in Heat Transfer, pp. 1–60. Elsevier, New York (1977).  https://doi.org/10.1016/S0065-2717(08)70221-1
  9. Narayanaswamy, O.S.: A model of structural relaxation in glass. J. Am. Ceram. Soc. 54(10), 491–498 (1971)CrossRefGoogle Scholar
  10. Narayanaswamy, O.S., Gardon, R.: Calculation of Residual stresses in glass. J. Am. Ceram. Soc. 52(10), 554–558 (1969)CrossRefGoogle Scholar
  11. Nielsen, J.H.: Tempered Glass: Bolted Connections and Related Problems. Ph.D. dissertation, Technical University of Denmark (2009)Google Scholar
  12. Nielsen, J.H., Olesen, J.F., Poulsen, P.N., Stang, H.: Finite element implementation of a glass tempering model in three dimensions. Comput. Struct. 88(17–18), 963–972 (2010)CrossRefGoogle Scholar
  13. Pourmoghaddam, N., Nielsen, J. H., Schneider, J.: Numerical simulation of residual stresses at holes near edges and corners in tempered glass: a parametric study. In: Engineered transparency international conference at Glasstec (2016)Google Scholar
  14. Pourmoghaddam, N., Schneider, J.: Finite-element analysis of the residual stresses in tempered glass plates with holes or cut-outs. Glass Struct. Eng. 3(1), 17–37 (2018).  https://doi.org/10.1007/s40940-018-0055-z CrossRefGoogle Scholar
  15. Pourmoghaddam, N., Schneider, J.: Experimental investigation into the fragment size of tempered glass. Glass Struct. Eng. 3(2), 167–181 (2018).  https://doi.org/10.1007/s40940-018-0062-0 CrossRefGoogle Scholar
  16. Schabel, W., Martin, H.: Prallströmung. In: VDI-Wärmeatlas, pp. 841–847. Springer, Heidelberg (2013)Google Scholar
  17. Schneider, J.: Festigkeit und Bemessung punktgelagerter Gläser und stoßbeanspruchter Gläser. Ph.D. dissertation, Technische Universität Darmstadt (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technical University of DarmstadtDarmstadtGermany

Personalised recommendations