Skip to main content
Log in

Sensitivity analysis for the determination of the interlayer shear modulus in laminated glass using a torsional test

  • SI: Challenging Glass paper
  • Published:
Glass Structures & Engineering Aims and scope Submit manuscript

Abstract

Polymeric interlayers used in laminated glass show viscoelastic material behaviour. Therefore, the precise design of laminated glass structures is dependent on temperature and the load duration. For the determination of the above-mentioned material behaviour of the interlayers different small and big scale test setups exist. One of these tests is the torsional test in which the shear modulus of the interlayer can be calculated from measured data during a relaxation test. In this test, a laminated glass plate is conditioned at a certain temperature of interest and then isothermally twisted to a specific angle, thereby the resulting torsional moment at the support is measured over a time span. With this data, it is possible to calculate the corresponding shear modulus of the interlayer. There are a lot of parameters and boundary conditions with potential influence on the test and the results (e.g. accuracy of the thickness of the glass plates and interlayer, accuracy of the twist-angle, clamping of the laminated glass). Based on already conducted torsional tests at the ‘University of German Armed Forces Munich’ a Finite Element Model was implemented. In a sensitivity analysis (Finite-Element-Analysis using ANSYS® V17.2) the influences and the interdependencies of the parameters and boundary conditions of the test setup were determined. The results of the analyses can be used to get an understanding of the significance of the measured and calculated values for the shear modulus of the interlayer using a torsional test. Furthermore, the results can help to optimize the torsional test. Moreover, the torsional test results were compared to small scale test results from a Dynamical Mechanical Thermal Analysis, which exposes small scale test specimen to a steady state oscillation at different frequencies and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Botz, M., Kraus, M.A., Siebert, G.: Investigations on the correlation of interlayer shear modulus determined from torsional and bending relaxation tests with DMTA test results. Glass Struct. Eng. (in preparation) (2018)

  • Callewaert, D., et al.: Experimental stiffness characterisation of glass/ionomer laminates for structural applications. Constr. Build. Mater. 37, 685–692 (2012)

    Article  Google Scholar 

  • DIN_53441: Prüfung von Kunstoffen, Spannungsrelaxationsversuch (Withdrawn) (1984)

  • DIN_7724: Polymere Werkstoffe – Gruppierung polymerer Werkstoffe auf-grund ihres mechanischen Verhaltens. In. (1993)

  • Ferry, J.D.: Viscoelastic Properties of Polymers, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  • Fesko, D.G., Tschoegl, N.W.: Time-temperature superposition. In: Thermorheologically Complex Materials. J. Polymer Sci.: Part C. Wiley (1971)

  • Göhler, J.: Das dreidimensionale viskoelastische Stoffverhalten im großen Temperatur- und Zeitbereich am Beispiel eines in der automobilen Aufbau- und Verbindungstechnik verwendeten Epoxidharzklebstoffs. Technischen Universität Dresden (2010)

  • Grellmann, W., Seidler, S.: Mechanical and Thermomechanical Properties of Polymers, vol. VIII/6A3. Springer, Berlin (2014)

    Google Scholar 

  • Kasper, R..: Tragverhalten von Glasträgern, Dissertation (2005)

  • Kraus, M.A., Niederwald, M.: Generalized collocation method using Stiffness matrices in the context of the theory of linear viscoelasticity (GUSTL). Tech. Mech. 37(1), 82–106 (2017)

    Google Scholar 

  • Kuntsche, J.K.: Mechanisches Verhalten von Verbundglas unter zeitabhängiger Belastung und Explosionsbeanspruchung. Technische Universität Darmstadt (2015)

  • Kuraray: Manual Verarbeitung von TROSIFOL\(\textregistered \) PVB-Folie. In. (2012)

  • Narayanaswamy, O.S.: A model of structural relaxation in glass. J. Am. Ceram. Soc. (1971). https://doi.org/10.1111/j.1151-2916.1971.tb12186

    Google Scholar 

  • Rühl, A., Kolling, S., Schneider, J.: Characterization and modeling of poly(methyl methacrylate) and thermoplastic polyurethane for the application in laminated setups. Mech. Mater. 113, 102–111 (2017). https://doi.org/10.1016/j.mechmat.2017.07.018

    Article  Google Scholar 

  • Scarpino, P., Kasper, R., Sedlacek, G.: Saint Venantsche Torsionswiderstände von Querschnitten in Sandwichbauweise. Bauingenieur 79, 167–175 (2004)

    Google Scholar 

  • Schneider, J., Kuntsche, J., Schula, S., Schneider, F., Wörner, J.-D.: Glasbau - Grundlagen, Berechnung, Konstruktion, vol. 2. Springer, Berlin (2016)

    Google Scholar 

  • Schwarzl, P.D.F.R.: Polymermechanik. Springer, Berlin (1990)

    Book  Google Scholar 

  • Siebertz, K., van Bebber, D., Hochkirchen, T.: Statistische Versuchsplanung, Design of experiments (DoE). Springer, Berlin (2010)

    Book  Google Scholar 

  • Stevels et al.: Effect of different sources of interlayer modulus data for glass design: the structural pvb case. Proceedings of Glass Performance Days 2017 (2017)

  • Williams, M.L., Landel, R.F., Ferry, H.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. (1955). https://doi.org/10.1021/ja01619a008

    Google Scholar 

  • Woicke, N., Keuerleber, M., Hegemann, B., Eyerer, P.: Three-dimensional thermorheological behavior of isotactic polypropylene across glass transition temperature. J. Appl. Polym. Sci. 94(3), 877–880 (2004). https://doi.org/10.1002/app.20875

    Article  Google Scholar 

  • Z-70.3-230: Allgemeine bauaufsichtliche Zulassung Z-70.3-230: Verbundglas aus der Produktfamilie SAFLEX DG mit Schubverbund. In: Prüfamt, D.I.f.B.-Z.f.B.u.B.-B. (ed.). (2016)

  • Z-70.3-236: Allgemeine bauaufsichtliche Zulassung Z-70.3-236 Verbund-Sicherheitsglas mit der PVB-Folie TROSIFOL ES mit Schubverbund. In: Prüfamt, D.I.f.B.-Z.f.B.u.B.-B. (ed.). (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Botz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botz, M., Kraus, M.A. & Siebert, G. Sensitivity analysis for the determination of the interlayer shear modulus in laminated glass using a torsional test. Glass Struct Eng 3, 355–371 (2018). https://doi.org/10.1007/s40940-018-0067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40940-018-0067-8

Keywords

Navigation