Advertisement

Glass Structures & Engineering

, Volume 3, Issue 1, pp 55–74 | Cite as

Adhesive connections in glass structures—part II: material parameter identification on thin structural silicone

  • Michael DrassEmail author
  • Gregor Schwind
  • Jens Schneider
  • Stefan Kolling
Research Paper

Abstract

The present paper proposes two methodologies of identifying hyperelastic material parameters of thin structural silicones based on so-called direct and inverse methods. Based on part I of this paper, analytical investigations were performed to conduct homogeneous experiments with structural silicones. To obtain more insight wether or not an experiment provides a homogeneous stress state, the so-called triaxiality was introduced, which allows one to illustrate differences between homogeneous and inhomogeneous experiments. With the help of this scalar, it was possible to design experimental test setups, which ensure a homogeneous stress and strain distribution within the tested rubber-like material. Furthermore an engineering approach to determine the testing speed of arbitrary experiments dependent on one reference testing speed and experiment was presented. This approach ensured equivalent strain energies between arbitrary and reference test specimens during testing, by which expensive strain rate controlled experiments can be relinquished. Based on these analytical studies, experimental data could be provided for the material parameter identification, which exhibits firstly a nearly homogeneous stress state in accordance to the desired stress and strain field of the applied mathematical model and secondly providing nearly equivalent strain energies within different experimental test set-ups and geometries of test specimens. Returning to the present paper, the first methodology identifies simultaneously hyperelastic material parameters based on a set of conventional and homogeneous experimental tests, like uniaxial tension and uniaxial compression, biaxial tension as well as shear-pancake tests. The second methodology determines inversely hyperelastic material parameters utilizing the inverse Finite Element Method based on one single unconventional and inhomogeneous experimental test, here a microindentation test. The main idea is to obtain reliable hyperelastic material parameters based on a single, inhomogeneous experiment to avoid many, time-consuming homogeneous experiments. To validate the inversely determined hyperelastic material parameters, simultaneous multi-experiment data fits are performed to relate the obtained material parameters to those of the microindentation tests. Considering the set of homogeneous experiments, two classical hyperelastic constitutive equations (Neo-Hooke and Mooney–Rivlin) were utilized to determine constitutive parameters. Due to the simplicity of the classical material laws, a more sophisticated, novel phenomenological hyperelastic material law will be proposed and compared with the results of the classical models respectively the results obtained by a modern hyperelastic material model after Kaliske & Heinrich, which generally delivers outstanding results for the material parameter identification.

Keywords

Thin structural silicone adhesive Material parameter identification Inverse finite element method Incompressible hyperelasticity 

List of symbols

UT

Uniaxial tension test

UC

Uniaxial compression test

BT

Biaxial tension test

SPC

Shear pancake test

MI

Microindentation test

MPI

Material parameter identification

iFEM

Inverse finite element method

FEMU

Finite element model updating

TRM

Trust region method

LAR

Least absolute residuals

MOP

Meta model of optimal prognosis

RMSE

Root mean squared error

\({\left( \bullet \right) _{\mathrm{{iso}}}}\)

Isochoric/volume-preserving

tr\(\left( \bullet \right) \)

Trace of argument

Grad\(\left( \bullet \right) \)

Gradient of argument

F

Deformation gradient

J

Relative volume

C

Right Cauchy-Green tensor

b

Left Cauchy-Green tensor

\({\bar{\mathbf{b}}}\)

Isochoric left Cauchy-Green tensor

\(\lambda _i\)

Principal stretches

\(\varepsilon _i^{\mathrm{{eng}}}\)

Engineering strain

\({I_{\mathbf{{ b}}}}\)

First principal strain invariant of \(\mathbf b \)

\({II_{\mathbf{{ b}}}}\)

Second principal strain invariant of \(\mathbf b \)

\({III_{\mathbf{{ b}}}}\)

Third principal strain invariant of \(\mathbf b \)

\(t_i\)

Principal engineering stress

\(\sigma _i\)

Principal Cauchy stress

p

Hydrostatic stress

\(\varPsi ( \bullet )\)

Helmholtz free energy

\(\mathcal {S}\)

Objective function

\(\varPhi _{{k}}\)

Trigger function

p

Vector of material parameters

Notes

Acknowledgements

We would like to thank Dow Corning Inc. and Interpane Glas Industrie AG gratefully for their support during our studies by providing us testing material.

Supplementary material

40940_2017_48_MOESM1_ESM.xlsx (93 kb)
Supplementary material 1 (xlsx 92 KB)

References

  1. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)CrossRefzbMATHGoogle Scholar
  2. Avril, S., Bonnet, M., Bretelle, A.S., Grediac, M., Hild, F., Ienny, P., Latourte, F., Lemosse, D., Pagano, S., Pagnacco, E.: Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 48(4), 381–402 (2008).  https://doi.org/10.1007/s11340-008-9148-y CrossRefGoogle Scholar
  3. Berselli, G., Vertechy, R., Pellicciari, M., Vassura, G.: Hyperelastic modeling of rubber-like photopolymers for additive manufacturing processes. In: Hoque M. (ed.) Rapid Prototyping Technology—Principles and Functional Requirements, pp. 135–152. InTech (2011).  https://doi.org/10.5772/20174
  4. Chaves, E.W.V.: Notes on Continuum Mechanics. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  5. Chen, Z., Scheffer, T., Seibert, H., Diebels, S.: Macroindentation of a soft polymer: identification of hyperelasticity and validation by uni/biaxial tensile tests. Mech. Mater. 64, 111–127 (2013).  https://doi.org/10.1016/j.mechmat.2013.05.003 CrossRefGoogle Scholar
  6. Cottin, N., Felgenhauer, H.P., Natke, H.G.: On the parameter identification of elastomechanical systems using input and output residuals. Ingenieur-Archiv 54(5), 378–387 (1984).  https://doi.org/10.1007/bf00532820 CrossRefzbMATHGoogle Scholar
  7. Deam, R.T., Edwards, S.F.: The theory of rubber elasticity. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 280(1296), 317–353 (1976)Google Scholar
  8. Dow Corning Europe SA.: On macroscopic effects of heterogeneity in elastoplastic media at finite strain. glasstec (2017)Google Scholar
  9. Drass, M., Schneider, J.: Constitutive modeling of transparent structural silicone adhesive—TSSA. In: Schrödter J. (ed.) 14. Darmstädter Kunststofftage, vol. 14 (2016a)Google Scholar
  10. Drass, M., Schneider, J.: On the mechanical behavior of transparent structural silicone adhesive (TSSA). In: Material Modelling, Multi-Scale Modelling, Porous Media, pp 446–451. CRC Press (2016b).  https://doi.org/10.1201/9781315641645-74
  11. Drass, M., Schwind, G., Schneider, J., Kolling, S.: Adhesive connections in glass structures-part i: experiments and analytics on thin structural silicone. Glass Struct. Eng. (2017).  https://doi.org/10.1007/s40940-017-0046-5 Google Scholar
  12. Edwards, S.F., Vilgis, T.A.: The tube model theory of rubber elasticity. Rep. Prog. Phys. 51(2), 243 (1988)MathSciNetCrossRefGoogle Scholar
  13. Farhat, C., Hemez, F.M.: Updating finite element dynamic models using an element-by-element sensitivity methodology. AIAA J. 31(9), 1702–1711 (1993)CrossRefzbMATHGoogle Scholar
  14. Gorash, Y., Comlekci, T., Hamilton, R.: Cae-based application for identification and verification of hyperelastic parameters. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. (2015)  https://doi.org/10.1177/1464420715604004
  15. Hadamard, J.: Sur les problèmes aux dérivés partielles et leur signification physique. Princet. Univ. Bull. 13, 49–52 (1902)Google Scholar
  16. Hartmann, S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38(44), 7999–8018 (2001).  https://doi.org/10.1016/S0020-7683(01)00018-X CrossRefzbMATHGoogle Scholar
  17. Hauser, C., Walz, B., Mainçon, P., Barnardo, C.: Application of inverse fem to earth pressure estimation. Finite Elem. Anal. Des. 44(11), 705–714 (2008).  https://doi.org/10.1016/j.finel.2008.03.005 CrossRefGoogle Scholar
  18. Heinrich, G., Straube, E.: On the strength and deformation dependence of the tube-like topological constraints of polymer networks, melts and concentrated solutions. i. The polymer network case. Acta Polym. 34(9), 589–594 (1983).  https://doi.org/10.1002/actp.1983.010340909 CrossRefGoogle Scholar
  19. Holzapfel, G.A.: Nonlinear Solid Mechanics, vol. 24. Wiley Chichester, Hoboken (2000)zbMATHGoogle Scholar
  20. Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012).  https://doi.org/10.1016/j.mechmat.2012.03.007 CrossRefGoogle Scholar
  21. Iman, R.L.: Latin Hypercube Sampling. Wiley, Hoboken (2008).  https://doi.org/10.1002/9780470061596.risk0299
  22. Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simul. Comput. 11(3), 311–334 (1982).  https://doi.org/10.1080/03610918208812265 CrossRefzbMATHGoogle Scholar
  23. James, H.M., Guth, E.: Theory of the elastic properties of rubber. J. Chem. Phys. 11(10), 455–481 (1943).  https://doi.org/10.1063/1.1723785 CrossRefGoogle Scholar
  24. Kaliske, M., Heinrich, G.: An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubber Chem. Technol. 72(4), 602–632 (1999)CrossRefGoogle Scholar
  25. Khajehsaeid, H., Naghdabadi, R., Arghavani, J.: A strain energy function for rubber-like materials. Const. Models Rubber 8, 205 (2013)zbMATHGoogle Scholar
  26. Kolling, S., Bois, P.A.D., Benson, D.J., Feng, W.W.: A tabulated formulation of hyperelasticity with rate effects and damage. Comput. Mech. 40(5), 885–899 (2007).  https://doi.org/10.1007/s00466-006-0150-x CrossRefzbMATHGoogle Scholar
  27. Kuhn, W.: Über die gestalt fadenförmiger moleküle in lösungen. Kolloid-Zeitschrift 68(1), 2–15 (1934).  https://doi.org/10.1007/BF01451681 CrossRefGoogle Scholar
  28. Kuhn, W.: Beziehungen zwischen molekülgröße, statistischer molekülgestalt und elastischen eigenschaften hochpolymerer stoffe. Kolloid-Zeitschrift 76(3), 258–271 (1936a).  https://doi.org/10.1007/BF01451143 CrossRefGoogle Scholar
  29. Kuhn, W.: Gestalt und eigenschaften fadenförmiger moleküle in lösungen (und im elastisch festen zustande). Angew. Chem. 49(48), 858–862 (1936b).  https://doi.org/10.1002/ange.19360494803 CrossRefGoogle Scholar
  30. Kuhn, W., Grün, F.: Beziehungen zwischen elastischen konstanten und dehnungsdoppelbrechung hochelastischer stoffe. Kolloid-Zeitschrift 101(3), 248–271 (1942).  https://doi.org/10.1007/BF01793684 CrossRefGoogle Scholar
  31. Le Saux, V., Marco, Y., Bles, G., Calloch, S., Moyne, S., Plessis, S., Charrier, P.: Identification of constitutive model for rubber elasticity from micro-indentation tests on natural rubber and validation by macroscopic tests. Mech. Mater. 43(12), 775–786 (2011)CrossRefGoogle Scholar
  32. Mainçon, P.: Inverse fem i: load and response estimates from measurements. In: Proceedings of 2nd International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa (2004a)Google Scholar
  33. Mainçon, P.: Inverse fem ii: dynamic and non-linear problems. In: Proceedings of 2nd International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa (2004b)Google Scholar
  34. Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79(5), 835–858 (2006).  https://doi.org/10.5254/1.3547969 CrossRefGoogle Scholar
  35. Marco, Y., Le Saux, V., Bles, G., Calloch, S., Charrier, P.: Identification of local constitutive model from micro-indentation testing. Const. Models Rubber VII, 177–182 (2011)Google Scholar
  36. Marlow, R.: A general first-invariant hyperelastic constitutive model in constitutive models for rubber iii. In: Proceedings of European conference London, pp. 15–17 (2003)Google Scholar
  37. Miehe, C., Schänzel, L.M.: Phase field modeling of fracture in rubbery polymers. Part i: finite elasticity coupled with brittle failure. J. Mech. Phys. Solids 65, 93–113 (2013).  https://doi.org/10.1016/j.jmps.2013.06.007 MathSciNetCrossRefzbMATHGoogle Scholar
  38. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials–part i: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52(11), 2617–2660 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940).  https://doi.org/10.1063/1.1712836 CrossRefzbMATHGoogle Scholar
  40. Nelder, J.A.: Inverse polynomials, a useful group of multi-factor response functions. Biometrics 22(1), 128–141 (1966)CrossRefGoogle Scholar
  41. Ogden, R.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc. R. Soc. Lond A Math. Phys. Eng. Sci. 328(1575), 567–583 (1972).  https://doi.org/10.1098/rspa.1972.0096 zbMATHGoogle Scholar
  42. Ogden, R., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34(6), 484–502 (2004)CrossRefzbMATHGoogle Scholar
  43. Overend, M.: Optimising connections in structural glass. In: Proceedings of 2nd International conference on Glass in Buildings (2005)Google Scholar
  44. Pacheco, C.C., Dulikravich, G.S., Vesenjak, M.: Inverse parameter identification in solid mechanics using bayesian statistics, response surfaces and minimization. Technische Mechanik 36(1–2), 110–121 (2016)Google Scholar
  45. Pagnacco, E., Lemosse, D., Hild, F., Amiot, F.: Inverse strategy from displacement field measurement and distributed forces using fea. In: SEM Annual Conference and Exposition on Experimental and Applied Mechanics (2005)Google Scholar
  46. Rivlin, R.S.: Large elastic deformations of isotropic materials. iv. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 241(835), 379–397 (1948)Google Scholar
  47. Santarsiero, M., Louter, C., Nussbaumer, A.: The mechanical behaviour of sentryglas ionomer and tssa silicon bulk materials at different temperatures and strain rates under uniaxial tensile stress state. Glass Struct. Eng. (2016).  https://doi.org/10.1007/s40940-016-0018-1 Google Scholar
  48. Schwarz, C., Ackert, P., Rössinger, M., Hofmann, A., Mauermann, R., Landgreber, D.: Mathematical optimization of clamping processes in car-body production. In: 12. Weimarer Optimierungs- und Stochastiktage (2015)Google Scholar
  49. Shkarayev, S., Krashanitsa, R., Tessler, A.: An inverse interpolation method utilizing in-flight strain measurements for determining loads and structural response of aerospace vehicles. Technical Report, NASA (2001)Google Scholar
  50. Shutov, A., Kreißig, R.: Regularized strategies for material parameter identification in the context of finite strain plasticity. Technische Mechanik 30(1–3), 280–295 (2010)Google Scholar
  51. Sitte, S., Brasseur, M., Carbary, L., Wolf, A.: Preliminary evaluation of the mechanical properties and durability of transparent structural silicone adhesive (tssa) for point fixing in glazing. J. ASTM Int. 10(8), 1–27 (2011).  https://doi.org/10.1520/JAI104084 Google Scholar
  52. Tessler, A., Spangler, J.L.: Inverse fem for full-field reconstruction of elastic deformations in shear deformable plates and shells. In: Proceedings of Second European Workshop on Structural Health Monitoring, pp. 83–90 (2004)Google Scholar
  53. Treloar, L.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)zbMATHGoogle Scholar
  54. Wineman, A.: Some results for generalized neo-hookean elastic materials. Int. J. Non-Linear Mech. 40(2), 271–279 (2005).  https://doi.org/10.1016/j.ijnonlinmec.2004.05.007 MathSciNetCrossRefzbMATHGoogle Scholar
  55. Yeoh, O.H., Fleming, P.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. B Polym. Phys. 35(12), 1919–1931 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017
corrected publication November 2017

Authors and Affiliations

  1. 1.Institute of Structural Mechanics and DesignTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Mechanics and MaterialsTechnische Hochschule MittelhessenGiessenGermany

Personalised recommendations