Skip to main content

Advertisement

Log in

Hydrochemical characteristics of aquifers from the coastal zone of the Essaouira basin (Morocco) and their suitability for domestic and agricultural uses

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Groundwater hydrochemical of coastal aquifers (Plio-Quaternary, Turonian, and Hauterivian) of Essaouira basin, Morocco, was used to evaluate the groundwater quality for drinking and irrigation uses as well as to determine the processes controlling its mineralization. In this semi-arid coastal zone, The rock-water interaction (dissolution of evaporite and carbonate minerals) evaporation, reverse cations exchange, and seawater intrusion are the main processes responsible for the mineralization of groundwater and their facies. Water Quality Index (WQI), and sodium percent (%Na), sodium adsorption ratio (SAR), permeability index (PI), and Kelly index (KI) ratios were applied to assess the groundwater for drinking and irrigation uses. WQI shows that the groundwater is generally of poor quality and not suitable for direct usage and requires treatment before domestic use. Based on %Na, SAR, PI, and KI, the groundwater remains adequate for agricultural purposes. However, an attention should be accorded to groundwater salinization processes. The approach followed as well as the results of this paper remain valid for better and sustainable management of the vital resource within the Essaouira basin and similar basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Alam M, Rais S, Aslam M (2012) Hydrochemical investigation and quality assessment of ground water in rural areas of Delhi, India. Environ Earth Sci 66:97–110

    Article  Google Scholar 

  • Bahir M, Ouhamdouch S, Ouazar D (2021) An assessment of the changes in the behavior of the groundwater resources in arid environment with global warming in Morocco. Groundw Sustain Dev 12:100541. https://doi.org/10.1016/j.gsd.2020.100541

    Article  Google Scholar 

  • Boughariou E, Bouri S, Khanfir H, Zarhloule Y (2014) Impacts of climate change on water resources in arid and semi-arid regions: Chaffar Sector. Eastern Tunis Desalin Water Treat 52:2082–2093

    Article  Google Scholar 

  • Brown RM, McClelland NI, Deininger RA, Tozer RG (1970) A water quality index: do we dare? Water Sew Works 117:339–343

    Google Scholar 

  • Chenaker H, Houha B, Valles V (2017) Isotope studies and chemical investigations of hot springs from North-Eastern Algeria. J Mater Environ Sci 8:4253–4263

    Google Scholar 

  • Clément GP, Holser TW (1988) Geochemistry of Moroccan evaporates in the setting of the north Atlantic rift. J Afr Earth Sci 7:375–383

    Article  Google Scholar 

  • Doneen LD (1964) Water quality for agriculture. Department of Irrigation, University of Calfornia, Davis

  • Dresh J (1962) Le Haut Atlas Occidental. Dans “Aspect de la géomorphologie du Maroc.” Notes Et Mémoire Du Service Géologique-Maroc 96:107–121

    Google Scholar 

  • Duffaud F (1960) Contribution à l’étude stratigraphique du bassin secondaire du Haut Atlas Occidental (sud-ouest du Maroc). Bull Soc Géol Fr 7:728–734

    Article  Google Scholar 

  • Duffaud F, Brun L, Planchot B (1966) Bassin du Sud-Ouest Marocain (SW Morocco Basin). In: Reyre (eds) Bassin Sédimentaire du Littoral Africain, partie I, Paris, pp 5–12

  • El Gayar A, Hamed Y (2018) Climate Change and Water Resources Management in Arab Countries. In: Kallel A, Ksibi M, Ben Dhia H, Khélifi N (eds) Recent advances in environmental science from the Euro-Mediterranean and surrounding regions. EMCEI. 2017. Advances in science, technology and innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham

    Google Scholar 

  • Government of Morocco (2009) State Secretariat of Water and Environment: National Water Strategy. http://www.environnement.gov.ma/PDFs/EAU/STRATEGIE_EAU.pdf. Accessed February 02, 2021

  • Hamed Y, Hadji R, Redhaounia B, Zighmi K, Bâali F, El Gayar A (2018) Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterr J Environ Integr 3:25. https://doi.org/10.1007/s41207-018-0067-8

    Article  Google Scholar 

  • Hassen I, Hamzaoui-Azaza F, Bouhlila R (2018) Hydrogeochemical and Isotopic Investigations for Evaluation of the Impact of Climate Change on Groundwater Quality, a Case Study of the Plaine of Kasserine, Central Tunisia. In: Calvache M, Duque C, Pulido-Velazquez D (eds) Groundwater and global change in the western Mediterranean area. Environmental earth sciences. Springer, Cham, pp 151–160. https://doi.org/10.1007/978-3-319-69356-9_18

    Chapter  Google Scholar 

  • Haut-Commissariat au Plan (2013) Séminaire sur: “La comptabilité des actifs naturels pour une croissance verte dans la région MENA” 26 et 27 mars 2013, Marseille, France. https://www.hcp.ma.

  • Horton RK (1965) An index number system for rating water quality. J Water Pollut Control Feder 37:300–306

    Google Scholar 

  • Kammoun S, Trabelsi R, Re V, Zouari K, Henchiri J (2018) Groundwater quality assessment in semi-arid regions using integrated approaches: the case of Grombalia aquifer (NE Tunisia). Environ Monit Assess 190:87. https://doi.org/10.1007/s10661-018-6469-x

    Article  Google Scholar 

  • Kelly WP (1940) Permissible composition and concentration of irrigation water. Proc Am Soc Civil Eng 66:607–613

    Google Scholar 

  • Khmila K, Trabelsi R, Zouari K, Kumar US (2021) Application of geochemical and isotopic tracers for the evaluation of groundwater quality in the irrigated area of the Sbiba plain (Central West Tunisia). Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2021.107298

    Article  Google Scholar 

  • Lachaal F, Chargui S, Messaoud RB, Chekirbane A, Tsujimura M, Mlayah A, Massuel S, Leduc C (2018) Impacts of global changes on groundwater resources in north-east tunisia: the case of the Grombalia phreatic aquifer. In: Calvache M, Duque C, Pulido-Velazquez D (eds) Groundwater and global change in the western Mediterranean area. Environmental Earth Sciences. Springer, Cham, pp 179–188. https://doi.org/10.1007/978-3-319-69356-9_21

    Chapter  Google Scholar 

  • Mennani A (2001) Apport de l’hydrochimie et de l’isotopie à la connaissance du fonctionnement des aquifères de la zone côtière d’Essaouira (Maroc Occidental). Ph.D. Thesis, Cadi Ayyad University, Marrakech, Maroc, 173 p.

  • Ouhamdouch S, Bahir M (2017) Climate change impact on future rainfall and temperature in semi-arid areas (Essaouira Basin, Morocco). Environ Process 4:975–990

    Article  Google Scholar 

  • Ouhamdouch S, Bahir M, Souhel A, Carreira PM (2016) Vulnerability and impact of climate change processes on water resource in semi-arid areas. In Essaouira basin (Morocco). In: Grammelis P (ed) Energy, transportation and global warming, green energy and technology. Springer International Publishing, Berlin, pp 719–736. https://doi.org/10.1007/978-3-319-30127-3_53

    Chapter  Google Scholar 

  • Ouhamdouch S, Bahir M, Carreira PM (2018) Impact du changement climatique sur la ressource en eau en milieu semi-aride: exemple du bassin d’Essaouira (Maroc). RSE 31:13–27

    Google Scholar 

  • Ouhamdouch S, Bahir M, Ouazar D, Carreira PM, Zouari K (2019) Evaluation of climate change impact on groundwater from semi-arid environment (Essaouira Basin, Morocco) using integrated approaches. Environ Earth Sci 78:449. https://doi.org/10.1007/s12665-019-8470-2

    Article  Google Scholar 

  • Ouhamdouch (2020) Impact du changement climatique et vulnérabilité des ressources en eau du bassin d’Essaouira. Thèse de doctorat, Université Cadi Ayyad, Marrakech, Maroc, pp 222

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) -A computer program for speciation, batch–reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water-Resour Invest Rep 99–4259:312

    Google Scholar 

  • Petelas CP, Diamantis IB (1999) Origin and distribution of saline groundwater in the Upper Miocene aquifer system, coastal Rhodope area, northern Greece. Hydrogeol J 7:305–316

    Article  Google Scholar 

  • Peybernes B, Bouaouda MS, Almeras Y, Ruget CH, Cugny P (1987) Stratigraphie du Lias et du Dogger du bassin d’Essaouira (Maroc) avant et pendant le début de l’expansion océanique dans l’Atlantique central. Comparaison avec le bassin d’Agadir. CR Acad Sci 305:1449–1555

    Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Trans AGU 25:914–923

    Article  Google Scholar 

  • Rafik A, Bahir M, Beljadid A, Ouazar D, Chehbouni A, Dhiba D, Ouhamdouch S (2021) Surface and groundwater characteristics within a semi-arid environment using hydrochemical and remote sensing techniques. Water 13:277. https://doi.org/10.3390/w13030277

    Article  Google Scholar 

  • Ravikumar P, Mehmood MA, Somashekar RK (2013) Water quality index to determine the surface water quality of Sankey tank and Mallathahalli Lake, Bangalore urban district, Karnataka, India. Appl Water Sci 3:247–261

    Article  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. LWWW 78(2):154

    Google Scholar 

  • Tambe S, Arrawatia ML, Bhutia NT, Swaroop B (2011) Rapid, cost effective and high resolution assessment of climate-related vulnerability of rural communities of Sikkim Himalaya. India Curr Sci 101(2):165–173

    Google Scholar 

  • United Nations (2014) Environmental performance reviews series No. 38. ECE/CEP/170. United Nations, New York, p 223

    Google Scholar 

  • Vashisht AK (2016) Development of an analytical function for optimizing the capacity of spring water storage structure. Sustain Water Resour Manag 2(4):337–352

    Article  Google Scholar 

  • Vashisht AK, Shakya SK (2020) An innovative approach to assessing the distribution of stored freshwater while injecting it through a well partially screening the brackish aquifer. Water Resour Manag 34(15):4687–4701

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking water quality, 4th edn. WHO, Geneva, p 564p

    Google Scholar 

  • Wilcox LV (1955) Classification and use of irrigation waters. USDA Circ. 969, Washington, DC

Download references

Acknowledgements

The authors are grateful to Dr. James W LaMoreaux Editor-in-Chief of Sustainable Water Resources Management Journal, and the anonymous reviewers. The authors would also like to thank Aziz Soulaimani, the technical manager of Water, Soil, and Plant Analysis Laboratory at Mohammed VI Polytechnic University of Benguerir from Morocco.

Funding

This research did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Ouhamdouch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouhamdouch, S., Bahir, M., Ouazar, D. et al. Hydrochemical characteristics of aquifers from the coastal zone of the Essaouira basin (Morocco) and their suitability for domestic and agricultural uses. Sustain. Water Resour. Manag. 8, 171 (2022). https://doi.org/10.1007/s40899-022-00754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-022-00754-6

Keywords

Navigation