Skip to main content

Advertisement

Log in

Heavy metal contamination and exposure risk assessment via drinking groundwater in Ain Azel territory, north-eastern Algeria

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

This study examined the degree of heavy metal contamination of Ain Azel territory in north-eastern Algeria. The groundwater quality was evaluated using water samples collected from 11 localities during May 2018. Thirteen physicochemical parameter values including temperature (T), pH, electric conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonates (HCO3), sulfates (SO42−), chloride (Cl), and nitrates (NO3) were recorded. Six heavy metals such as iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr) and lead (Pb) were analyzed using atomic absorption spectrophotometer (AAS). All the results were compared with WHO standard for drinking water quality. Also, the data were used to estimate the pollution evaluation indices (HPI, HEI, Cd), which indicated that 63.63% of the water samples had high HEI value and 72.72% of the total analyzed samples had high Cd values, indicating high contamination in these samples. The high values of health risk assessment parameters (ADD, HQ, CR) for the groundwater samples predicted possible health risks to the local people by drinking metal-rich groundwater.

Principal component analysis unconnectedly grouped heavy metals and physicochemical characteristics of groundwater and the calculated pollution indices. This correlation indicated that chromium and lead were responsible for the high values of HPI, HEI and Cd obtained in this study. Therefore, there is lead and chromium pollution in the groundwater of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adepoju-Bello AA, Alabi OM (2005) Heavy metals: A review. Nig J Pharm 37:41–45

    Google Scholar 

  • Adepoju-Bello AA, Ojomolade OO, Ayoola GA, Coker HAB (2009) Quantitative analysis of some toxic metals in domestic water obtained from Lagos metropolis. Nig J Pharm 42(1):57–60

    Google Scholar 

  • Aghazadeh N, Moghaddam AA (2011) Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environ Monit Assess 176:183–195

    Article  Google Scholar 

  • Aghazadeh N, Chitsaza M, Golestan Y (2016) Hydrochemistry and quality assessment of groundwater in the Ardabil Area Iran. Appl Water Sci 7:3599–3616. https://doi.org/10.1007/s13201-016-0498-9

    Article  Google Scholar 

  • Ahmedna M, Marshall WE, Husseiny AA, Rao RM, Goktepe I (2004) The use of nutshell carbon in drinking water filters for removal of trace metals. Water Res 38:1062–1068

    Article  Google Scholar 

  • Alasyand M, Barati AH, Maleki A (2012) Health concern and chronic poisoning of heavy metals for drinking water consumers in rural region in the west area of Iran. Int J Infect Dis 16:317–473

    Google Scholar 

  • Al-Saleh I, Shinwaria N, Mashhour A, Mohamed GED, Rabah A (2011) Heavy metals (Lead, Cadmium and Mercury) in maternal, cord blood and placenta of healthy women. Int J Hyg Environ Health 214:79–101

    Article  Google Scholar 

  • Ameur M, Hamzaoui-Azaza F, Gueddari M (2019) Contribution of remote sensing and geochemistry approaches to identify hydrogeological interconnections betwween Sminja and oued Rmel aquifer system (SORAS) (North-Eastern Tunisia). Desalin Water Treat 158:216–224

    Article  Google Scholar 

  • Arain MB, Kazi TG, Baig JA, Jamali MK (2009) Respiratory effects in people exposed to arsenic via the drinking water and tobacco smoking in southern part of pakistan. Sci Tptal Environ 407:5524–5530

    Article  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2015) Toxicological profiles, toxic substances portal. Available online at: http:// www.atsdr.cdc.gov/toxprofiles/index.asp.

  • Baastrup R, Sorensen M, Balstrom T, Frederiksen K, Larsen CL, Tjonneland A, Overvad K, Raaschou-Nielsen O (2008) Arsenic in drinking water and risk for cancer in Denmark. Environ Health Perspect 116:231–237

    Article  Google Scholar 

  • Backman B, Bodis D, Laherno P, Rapant S, Tarvainen T (1998) Application of a groundwater contamination index in Finland and Slovakia. Environ Geol 36:55–64

    Article  Google Scholar 

  • Badr EAE, Agrama AAE, Badr SAE (2011) Heavy meatls in drinking water and human health. Egypt. Nutr Food Sci 41(3):210–217

    Article  Google Scholar 

  • Bawaskar HS, Bawaskar PH (2010) Chronic renal failure associated with heavy metal contamination of drinking water: a clinical report from a small village in Maharashtra. Clin Toxicol 48(7):768

    Article  Google Scholar 

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater-A case study: Ain Azel plain (Algeria). Geoderma 159:390–398

    Article  Google Scholar 

  • Bellouche MA (2016) Schéma hydrogéologique possible de la mine de kherzet Youssef, Nord Est Algérien , Sciences et Technologie, D, n°44, Revue Semestrielle de l’Université Mentouri, Constantine, Algérie. pp. 73–80. Available at: http://revue.umc.edu.dz/index.php/d

  • Bhutiani R, kulkarni D B, Khanna D R, Gautam A, (2017) Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and it surrounding, Haridwar, India. Energ Ecol Env 2(2):155–167

    Article  Google Scholar 

  • Boateng TK, Opoku F (2019) Akoto O (2019) Heavy metal contamination assessment of groundwater quality: a case study of Oti landfill site. Kumasi Appl Water Sci 9:33. https://doi.org/10.1007/s13201-019-0915-y

    Article  Google Scholar 

  • Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007) Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect 115:122–127

    Article  Google Scholar 

  • Boutaleb A (2001) Les minéralisations à Pb–Zn du domaine Sétifien-Hodna, gitologie, pétrographie, micro thermométrie et implications métallogéniques . Thèse de doctorat en géologie minière, USTHB, Alger

  • Boutaleb A, Marginac Ch, Pironon J, Aissa DE, Lekbal F (2014) Oil-bearing fluid inclusion from Hodna mounts ore deposits (North eastern-Algeria). In: Asian current research on fluids inclusions ACROFI 2014, Xi’an, China

  • Buschmann JB, Stengel CM, Winkel L, Sampson ML, Trang PTK, Viet PH (2008) Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ Int 34:756–764

    Article  Google Scholar 

  • Cavar S, Klapec T, Grubesic RJ, Valek M (2005) High exposure to arsenic from drinking water at several localities in eastern Croatia. Sci Total Environ 339:227–282

    Article  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Murill M, dey S, Mukherjee S C, Dhar R K, Biswas B K, Chowdhury U K, Ro S, Sorif S, Selim M, Rahman M, Quazi Q, (2010) Status of groundwater arsenic contamination in Bangladesh: A 14 year study report. Water Res 44:5789–5802

    Article  Google Scholar 

  • Chaturvedi A, bhattacharjee S, Sing A K, Kumar V, (2018) A new approach for indexing groundwater heavy metal pollution. Ecol Ind 87:323–331

    Article  Google Scholar 

  • Chowdhury S, Jafar Mazunder MA, Al-Attas O, Husain T (2016) Heavy metals in drinking water: occurrences, implications and future needs in developing countries. Sci Total Environ 569–570(2016):476–488. https://doi.org/10.1016/j.scitotenv.2016.06.166

    Article  Google Scholar 

  • Colak EH, Yomralioglu T, Nisanci R, Duran C (2015) Geostatistical analysis of the relationship between heavy metals in drinking water and cancer incidence in residential areas in Black Sea Region of Turkey. Environ Health 77(6):86–93

    Google Scholar 

  • Dimirkou A, Doula MK (2010) Use of clinoptilolite and fe- overexchanged clinoplilolite in Zn+2 and Mn+2 removal from drinking water. Desalination 224:280–292

    Article  Google Scholar 

  • Durand-Delga M, Fontbote J M (1980) Le cadre structural de la Méditerranée occidentale, In : BRGM, géologie des chaines alpines. ISSUES de la Téthys. XXVIème congrès géologique international, Paris. 1980. Colloque C5. Mém.115, Orélan.

  • Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring: a study case from Akpabuyo-Odukpaniarea Lower Cross River Basin (South eastern Nigeria). Geo J 57:295–304

    Google Scholar 

  • Edmunds W, Shand P, Hart P, Ward R (2003) the natural (baseline) quality of groundwater: A UK pilot study. Sci Total Environ 301:25–35

    Article  Google Scholar 

  • Egbueri JC (2018) Assessment of the quality of groundwater proximal to dumpsites in Awka and Nnewi metropolises : a comparative approach. Int J Energy Water Res 3(1–4):33–48

    Article  Google Scholar 

  • ENOF (2003) Rapport final sur l’hydrogéologie du gisement de Chaabet el Hamra Rapport interne.

  • EREM (1992) Rapport final sur les travaux d’évaluation du gisement de Chaabet-el-Hamra avec calcul de réserves, Volume 1. Rapport interne.

  • Ezugwu CK, Onwuka OS, Egbueri JC, Unigwe CO, Ayejoto DA (2019) Multi-criteria approach to water quality and health risk assessments in a rural agricultural province, southeast Nigeria. HydroResarch 2:40–48. https://doi.org/10.1016/j.hydres.2019.11.005

    Article  Google Scholar 

  • Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4:945–948

    Article  Google Scholar 

  • Ferati F, Kerolli-Mustafa M, Kraja-Ylli A (2015) assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environ Monit Assess 187(6):338

    Article  Google Scholar 

  • Fu HZ, wang M H, Ho Y S, (2013) Mapping of drinking water research : a bibliometric analysis of reserach output during 1992–2011. Sci Total Environ 443:757–765

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanism controlling world water chemistry. Science 170(3962):1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  Google Scholar 

  • Glaçon J (1958) Les monts du Hodna, partie orientale XIXème congrès géologique international, monographie régionale 1 sérié, Algérie N° 7.

  • Glaçon J (1967) Recherche sur la géologie et les gites métallifères du tell Sétifien, Algérie. Tome 2, bulletin N° 32. Publication du service géologique de l’Algérie.

  • Gleeson T, Wada Y, Bierkens MF, Van Beek LP (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200

    Article  Google Scholar 

  • Gollavelli G, Chang CC, Ling YC (2013) facile synthesis of smart magnetic grapheme for safe drinking water: heavy metal removal and disinfection control. ACS Sustain Chem Eng 1:462–472

    Article  Google Scholar 

  • Gowd SS, Govil PK (2008) Distribution of heavy metals in surface water of Ranipet industrial area in Tamil Nadu. India Environ Monit Assess 136:197–207

    Article  Google Scholar 

  • Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of development toxicity. Lancet Neurol 13:330–338

    Article  Google Scholar 

  • Guiraud R (1971) aperçu sur les principaux traits du Hodna et des régions voisines, bulletin de service de l’Algérie N° 41, nouvelle série, publication du service géologique de l’Algérie.

  • Horton RK (1965) an index number for rating water quality. J Water Pollut Control Fed 37:300–305

    Google Scholar 

  • Hotelling H (1933) Analysis of complex of statistical variables into principal components. J Educ Psychol 24(6):417

    Article  Google Scholar 

  • Kada H, Demdoum A (2020) Assessment of the Hauterivian groundwater quality in zinc mining area for drinking and irrigation uses: case of Chaabet el Hamra, Algeria. J Water Land Dev 46:131–139. https://doi.org/10.24425/jwld.2020.134205

    Article  Google Scholar 

  • Karmakar B, Singh MK, Choudhary BK, Singh SK, Egbueri JC, Gautam SK, Rawat KS (2021) Investigation of the hydrogeochemistry, groundwater quality, and associated health risks in industrialized regions of Tripura, northeast India. Environ Forens. https://doi.org/10.1080/15275922.2021.2006363

    Article  Google Scholar 

  • Khalid S, Shahid M, Shah AH, Saeed F, Ali M, Qaisran SA, Dunat C (2020) Heavy metal contamination and exposure risk assessment via drinking groundwater in Vehary, Pakistan. Environ Sci Pol Res. https://doi.org/10.1007/s11356-020-10106-6

    Article  Google Scholar 

  • Khan K, wasserman G A, Liu X, (2012) Manganese exposure from drinking water and children’s academic achievement. Neurotoxicology 33:91–97

    Article  Google Scholar 

  • Khoshman Z, Sarikhani R (2017) dehnavi A G, Ahmadnejad Z (2017) Evaluation of water quality using heavy metal index and multivariate statistical analysis in Lorestan Province. Iran J ADV Environ Health Res 5:29–37

    Google Scholar 

  • Kim K, Yun ST (2005) Buffering of sodium concentration by cation exchange in the ground water system of a sandy aquifer”. Geochem J 39(3):273–284

    Article  Google Scholar 

  • Kouassi AM, Mamadou A, Ahoussi KE, Biemi J (2013) Simulation de la conductivité électrique des eaux souterraines en relation avec leurs propriétés géologiques : Cas de la Côte d’Ivoire. Rev Ivoir Sci Technol 21–22:138–166

    Google Scholar 

  • Krishna AK, Satyanarayanan M, Govil PK (2009) Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area : a case study from patancheru, Medak district, Andhra Pradesh. India J Hazard Mat 167(1):366–373

    Article  Google Scholar 

  • Kurttio P, Auvinen A, Salonen L, Saha H, Pekkanen P, Makelainen I, Vaisanen SB, Pentila IM, Komulainen H (2002) Renal effects of Uranium in drinking water. Environ Health Perspect 110(40):337–342

    Article  Google Scholar 

  • Lee JS, Chon HT, Kim HT (2005) Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environ Geochem Health 27:185–191

    Article  Google Scholar 

  • Maliqi E, Jusufi K, Singh SK (2020) Assessment and spatial mapping of groundwater parameters using metal pollution indices, graphical methods and geoinformatics, analytical chemistry letters. Anal Chem Lett 10(2):152–180. https://doi.org/10.1080/22297928.2020.1764384

    Article  Google Scholar 

  • Mohan SV, Nithila P, reddy S J, (1996) Estimation of heavy metals in drinking water and development of heavy metal pollution index. J Environ Sci Health A 31:283–289

    Google Scholar 

  • Momodu MA, Anyakora CA (2010) Heavy metal contamination of groundwater: the surulure case study. Res J Environ Earth Sci 2(1):39–43

    Google Scholar 

  • Mosaferi M, Yunesian M, Dastgiri S, Mesdaghinia A, Esmailnasab N (2008) Prevalence of skin lesions and exposure to arsenic in drinking water in Iran. Sci Total Environ 390:69–76

    Article  Google Scholar 

  • Mosby CV, Glanze WD, Anderson KN (1996) Mosby medical encyclopedia The signet revised edition. St Louis 16:875–882

    Google Scholar 

  • Mukherjee I, Singh UK, Singh RP, Kumari D, Jha PK, Mehta P (2020) characterization of heavy metal pollution in antropogenically and geologically influenced semi-arid region of east india and assessment of ecological and human health risks. Sci Total Environ 705:135801

    Article  Google Scholar 

  • Nollet L M L (2007) Handbook of water analysis, 2nd ed.CRC Press, Boca Raton.

  • Pradhan B, Pirasteh S (2011) Hydro-chemical analysis of the ground water of the Basaltic Catchments: Upper Bhatsai Region, Maharastra”. Open Hydrol J 5:51–57

    Article  Google Scholar 

  • Prasad B, Bose J (2001) Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalaya. Environ Geol 41:183–188

    Article  Google Scholar 

  • Prasana MV, Praveena SM, Chidambaram S, Nagarajan R, Elayaraja A (2012) Evaluation of water quality pollution indices for heavy metal contamination monitoring; a case study from Curtin Lake, Miri City, east Malaysia. Environ Earth Sci 67(7):1987–2001

    Article  Google Scholar 

  • Radojevic M, Bashkin VN (1999) Pratical environmental analysis. Royal Society of Chemistry, London

    Google Scholar 

  • Rawat KS, Mishra AK, Singh SK (2017) Mapping of groundwater quality using normalized difference dispersal index of Dwarka sub-city at Delhi national capital of India. ISH J Hydraul Eng 23(3):229–240

    Article  Google Scholar 

  • Razo I, Carrizales L, Castro J, Diaz-Barringa F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152

    Article  Google Scholar 

  • Rezaei A, Hassani H (2017) Hydro geochemistry study and groundwater quality assessment in the north of Isfahan. Iran. Environ Geochem Health 40(2):583–608. https://doi.org/10.1007/s10653-017-0003-x

    Article  Google Scholar 

  • Rezaei A, Hassani H, Hassani S, Jabbari N, Mousavi SBF, Rezaei S (2019) Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundw Sustain Dev 9:100245

    Article  Google Scholar 

  • Rizwan U, Riffat NM, Quadir A (2009) Assessment of groundwater contamination in an industrial city, Sialkot. Pakistan. Afr JEnviron Sci Technol 3(12):429–446

    Google Scholar 

  • Rubio B, Nombela M, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980

    Article  Google Scholar 

  • Savornin F (1920) Étude géologique de la région du Hodna et du plateau Sétifien. Thèse ès sci nat. Lyon p 44–45 S. Publication du service géologique de l’Algérie.

  • Shil S, Singh UK (2019) Health risk assessment and spatial variation of dissolved heavy metals and metalloids in tropical river basin system. Ecol Indic 106:105455. https://doi.org/10.1016/j.ecolind/2019.105455

    Article  Google Scholar 

  • Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques- a case study. Anal Chimia Acta 538(1):355–374

    Article  Google Scholar 

  • Singh SK, Srivastava PK, Pandey AC, Gautam SK (2013a) Integrated assessment of groundwater influenced by a confluence river system: concurrence with remote sensing and geochemical modeling. Water Resour Manag 27(12):4291–4313

    Article  Google Scholar 

  • Singh SK, Srivastava PK, Pandey AC (2013b) Fluoride contamination mapping of groundwater in Northern India integrated with geochemical indicators and GIS. Water Sci Technol Water Supply 13:1513–1523

    Article  Google Scholar 

  • Singh SK, Srivastava PK, Singh D, Han D, Gautam SK, Pandey AC (2015) modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: a case study of Allahabad district, india. Environ Geochem Health 37(1):157–180

    Article  Google Scholar 

  • Siriwong W (2006) Organophosphate pesticide residues in aquatic ecosystem and health risk assessment of local agriculture community. Chulalongkorn university, Bangkok

    Google Scholar 

  • Smithlingas E O, Rahman M, AH (2000) Contamination of drinking water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):1093–1103

    Google Scholar 

  • Tabassum RA, Shahid M, Niazi NK, Dunat C, Zhang Y, Imran M, Bakhat HF, Hussain I, Khalid S (2019) Arsenic removal from aqueous solutions and groundwater using agricultural biowastes derived biosorbents and biochar: a column-scale investigation. Int J Phytoremed 21(6):1–10

    Article  Google Scholar 

  • Tiwari AK, De Maio M, Singh PK, Mahato KM (2015) Evaluation of surface water quality by using GIS and heavy metal pollution index (HPI) model in a coal mining area, India. Bull Environ Contam Toxicol 95:304–310. https://doi.org/10.1007/s00128-015-1558-9

    Article  Google Scholar 

  • Ukah BU, Egbueri JC, Unigwe CO, Ubido OE (2019) Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. Int Energy Water Res 3(4):291–303

    Article  Google Scholar 

  • USEPA (United States Environmental protection Agency) (2015) regulated drinking water contaminants. Online database. Available at http://www.Epa.gov/dwstandardsregulations#Disinfectants

  • Vila JM (1980) Chaine alpine de l’Algérie orientale et des couffins algéro- tunisiens. Thèse Doct D’état Univ Paris V I:2t

    Google Scholar 

  • Von-Ehrenstein OS, Mazunder DNG, Hira-Smith MH, Ghosh N, Yuan Y, Windham G, Ghosh A, Haque R, Lahiri S, Kalman D, Das S, Smith AH (2006) Pregnancy outcomes, infant mortality, and arsenic in drinking water in west Bengal. India Am J Epidemiol 163(7):662–669

    Article  Google Scholar 

  • Wagh VM, Panaskar DB, Mukate SV, Gaikwad SK, Muley AA, Varade AM (2018) Health risk assessment of heavy metal contamination in groundwater of Kadava River basin, Nashik. India Model Earth Syst Environ 4(3):969–980

    Article  Google Scholar 

  • Wang Z, Gao Z, Wang S, Liu J, Li W, Deng Q, Lv L, Liu Y, Su Q (2021a) Hydrochemestry characters and hydrochemeical process under the impact of anthropogenic activity in the Yiyuan city. North China Environ Earth Sci 80:60

    Article  Google Scholar 

  • Wang Z, Su Q, Wang S, Gao Z, Liu J (2021b) Spatial distribution and health risk assessment of dissolved heavy metals in groundwater of eastern china coastal zone. Environ Pol 290:118016. https://doi.org/10.1016/j.envpol.2021b.118016

    Article  Google Scholar 

  • Wasserman G, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P, Kline J, An-Geen A, Slavkovich V, Lolacono N, Cheng Z, Zhzng Y, Graziano J (2006) Water manganese exposure and children’s intellectual functions in Araihazar. Bangladesh Environ Health Perspect 114:124–129

    Article  Google Scholar 

  • WHO (2011) Guidelines for quality drinking-water, 4th edn. World Health Organization, Geneva

    Google Scholar 

  • Wildi W (1983) La chaine tello-rifaine (Algérie, Maroc, Tunisie) structure, stratigraphie et évolution du trias au Miocène. Rev Geol Dynam Geogr Phys 24(3):201–297

    Google Scholar 

  • Wolfgang KH, Léopold S (2012) Applied multivariate statistical analysis. Edition 3:201–418

    Google Scholar 

  • Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36:169–182

    Article  Google Scholar 

  • Xia K, Fergusona RZ, Losier M, Tchoukanova N, Bruning R, Djaoued Y (2010) Synthesis of hybrid silica materials with tunable pore structures and morphology and their application for heavy metal removal from drinking water. J Hazard Mater 183:554–564

    Article  Google Scholar 

  • Yang X, wang X, Feng Y, Zhang G, Wang T, Song W, Shu C, Jiang L, Wang C, (2013) Removal of multifold heavy metal contaminations in drinking water by porous magnetic Fe2O3 –AlO(OH) superstructure. J Mater Chem A 1:473–477

    Article  Google Scholar 

  • Yoshida F, Hata A, Tonegawa H (1999) Itai-Itai disesse and the countermeasures against cadmium pollution by the Kamioka mine. Environ Econ Policy Stud 2:215–229

    Article  Google Scholar 

  • Zhang N, Zang S, Sun Q (2014) Health risk assessment of heavy metals in the water environment of Zhalong Wetland, China. Ecotoxicology 23:518–526

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Sciences Faculty of Ferhat Abbas Setif University. We would like to thank this department. The authors are grateful to the anonymous reviewers and editors for their constructive comments and suggestions, which helped us to improve the quality of our paper.

Funding

The authors declare that they did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houria Kada.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kada, H., Demdoum, A., Baali, F. et al. Heavy metal contamination and exposure risk assessment via drinking groundwater in Ain Azel territory, north-eastern Algeria. Sustain. Water Resour. Manag. 8, 163 (2022). https://doi.org/10.1007/s40899-022-00748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-022-00748-4

Keywords

Navigation