Skip to main content
Log in

Elaborating rating curves for implementation of the MGB hydrological model in a river basin, Amazon region, Brazil

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

The main objective of this study was to implement and execute the MGB hydrological model for the Itacaiúnas River basin (IRB) using flow data calculated using rating curves from 8 streamflow gauges. To evaluate the performance of the model, the Nash–Sutcliffe coefficient of daily flows (NSE), Nash–Sutcliffe coefficient of daily flow logarithms (NSELog), relative long-term error (BIAS%) and correlation coefficient (r) between flows were used. The results showed that the model better simulated the minimum flows and the periods of recession but did not reach the peak flows at some stations, which might have been related to the extrapolation of the rating curves. In addition, the flow duration curves had a good adjustment in the low flows. Finally, limitations of the model and monitoring were observed, in addition to regional characteristics that may have interfered with the performance of some points. In general, it was concluded that the results were very promising and satisfactory. Thus, the MGB hydrological model managed to reproduce the basin’s seasonality and can be used as a tool to support the management of water resources in the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcamo J, Flörke M, Märker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J 52(2):247–275

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JDM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728

    Article  Google Scholar 

  • Arsenault R, Poulin A, Côté P, Brissette F (2014) Comparison of stochastic optimization algorithms in hydrological model calibration. J Hydrol Eng 19(7):1374–1384

    Article  Google Scholar 

  • Arsenault R, Brissette F, Martel JL (2018) The hazards of split-sample validation in hydrological model calibration. J Hydrol 566:346–362

    Article  Google Scholar 

  • Cavalcante RBL, Pontes PRM, Souza-Filho PWM, de Souza EB (2019) Opposite effects of climate and land use changes on the annual water balance in the amazon arc of deforestation. Water Resour Res 55(4):3092–3106

    Article  Google Scholar 

  • Chen Y, Xu CY, Chen X, Xu Y, Yin Y, Gao L, Liu M (2019) Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models. J Hydrol 573:486–500

    Article  Google Scholar 

  • Collischonn W (2001) Simulação hidrológica em grandes bacias. Porto Alegre: UFRGS. Tese Doutorado. pp 194

  • Collischonn W, Tucci CEM (2001) Hydrological simulation of large drainage basins. Braz J Water Resour 6(1):15–35

    Google Scholar 

  • Collischonn W, Allasia D, Da Silva BC, Tucci CE (2007) The MGB-IPH model for large-scale rainfall—runoff modelling. Hydrol Sci J 52(5):878–895

    Article  Google Scholar 

  • Cordeiro A, Medeiros PA (2003) Estimativa da curva-chave de Blumenau. In: Simpósio Brasileiro de Hidrologia e Recursos Hídricos, 15. Anais Curitiba: ABRH, Curitiba.

  • Dias LC, Fernandes LL, Lopes DF (2019) Elaboração e Extrapolação de Curvas-chave na Região Amazônica. Revista Brasileira De Geografia Física 12(06):2285–2301

    Article  Google Scholar 

  • Fan FM, Buarque DC, Pontes PRM, Collischonn W (2015) Um mapa de unidades de resposta hidrológica para a América do Sul. XXI Simpósio Brasileiro de Recursos Hídricos, novembro de 2015, Brasília-DF. Anais do XXI Simpósio Brasileiro de Recursos Hídricos. PAP019919.

  • Fan M, Mawuko DO, Shibata H, Ou W (2019) Spatial conservation areas for water yield hydrological ecosystem services with their economic values effects under climate change: a case study of Teshio watershed located in northernmost of Japan. Hydrol Res 50(6):1679–1709

    Article  Google Scholar 

  • Felix VS, Paz AR (2016) Representação dos processos hidrológicos em bacia hidrográfica do semiárido paraibano com modelagem hidrológica distribuída. RBRH 21(3):556–569

    Article  Google Scholar 

  • Filho DP, Santos I, Fill HF (2003) Sistema de ajuste e extrapolação de curva de descarga—Stevens. Anais do Simpósio Brasileiro de Hidrologia e Recursos Hídricos.

  • Fill, H. D. (1987). Informações Hidrológicas. In: MODELOS para gerenciamento de recursos hídricos Capítulo 2. Nobel: ABRH. pp 93–210.

  • Fleischmann A, Siqueira V, Paris A, Collischonn W, Paiva R, Pontes P, Tanimoun B (2018) Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands. J Hydrol 561:943–959

    Article  Google Scholar 

  • Fraga I, Cea L, Puertas J (2019) Effect of rainfall uncertainty on the performance of physically based rainfall–runoff models. Hydrol Process 33(1):160–173

    Article  Google Scholar 

  • Francesconi W, Srinivasan R, Pérez-Miñana E, Willcock SP, Quintero M (2016) Using the soil and water assessment tool (SWAT) to model ecosystem services: a systematic review. J Hydrol 535:625–636

    Article  Google Scholar 

  • Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Cudennec C (2013) A decade of predictions in ungauged basins (PUB)—a review. Hydrol Sci J 58(6):1198–1255

    Article  Google Scholar 

  • Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688

    Article  Google Scholar 

  • Ibbitt RP, Pearson CP (1987) Gauging frequency and detection of rating changes. Hydrol Sci J 32(1):85–103

    Article  Google Scholar 

  • Itacaiúnas GAT (2007) GAT Itacaiúnas: Estudo de Gestão Ambiental Territorial da Bacia do Itacaiúnas Caderno 3. Marabá, Água Relatório Interno, p 261

    Google Scholar 

  • Jaccon G, Cudo KJ (1989) Curva-chave: análise e traçado. DF: DNAEE, Brasília. pp 273.

  • Jackson EK, Roberts W, Nelsen B, Williams GP, Nelson EJ, Ames DP (2019) Introductory overview: error metrics for hydrologic modelling–a review of common practices and an open source library to facilitate use and adoption. Environ Model Softw 119:32–48

    Article  Google Scholar 

  • Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97

    Article  Google Scholar 

  • Mansanarez V, Renard B, Coz JL, Lang M, Darienzo M (2019) Shift happens! Adjusting stage-discharge rating curves to morphological changes at known times. Water Resour Res 55(4):2876–2899

    Article  Google Scholar 

  • Martins DDM, Chagas RM, Melo Neto JDO, Méllo Júnior AV (2011) Impactos da construção da usina hidrelétrica de Sobradinho no regime de vazões no Baixo São Francisco. Revista Brasileira De Engenharia Agrícola e Ambiental 15(10):1054–1061

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: Whither water management? Earth 4:20

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21(1):1–25

    Article  Google Scholar 

  • Ossa-Moreno J, McIntyre N, Ali S, Smart JC, Rivera D, Lall U, Keir G (2018) The hydro-economics of mining. Ecol Econ 145:368–379

    Article  Google Scholar 

  • Pontes PRM, Fan FM, Fleischmann AS, de Paiva RCD, Buarque DC, Siqueira VA, Collischonn W (2017) MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS. Environ Model Softw 94:1–20

    Article  Google Scholar 

  • Pontes PR, Cavalcante RB, Sahoo PK, da Silva Júnior RO, da Silva MS, Dall’Agnol R, Siqueira JO (2019) The role of protected and deforested areas in the hydrological processes of Itacaiúnas River Basin, eastern Amazonia. J Environ Manage 235:489–499

    Article  Google Scholar 

  • Pontes PRM, Cavalcante RBL, Giannini TC, Costa CPW, Tedeschi RG, Melo AMQ, Xavier ACF (2022) Effects of climate change on hydrology in the most relevant mining basin in the Eastern Legal Amazon. Water 14(9):1416. https://doi.org/10.3390/w14091416

    Article  Google Scholar 

  • Ribeiro Neto A, Barbosa RI, Filho PFA, Cirilo JA (2007) Uso do modelo hidrológico de grandes bacias (MGB-IPH) em regiões semiáridas. In Conferência Internacional sobre Água em Regiões Áridas e Semiáridas 2 Gravatá Anais. Pernambuco Associação Brasileira de Recursos Hídricos.

  • Sefione AL (2002) Estudo comparativo de métodos de extrapolação superior de curvas-chave. Dissertação (Mestrado em Engenharia). Instituto de Pesquisas Hidráulicas Universidade Federal do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  • Sikorska AE, Renard B (2017) Calibrating a hydrological model in stage space to account for rating curve uncertainties: general framework and key challenges. Adv Water Resour 105:51–66

    Article  Google Scholar 

  • Silva PMDO, Mello CRD, Silva AMD, Coelho G (2008) Modelagem da hidrógrafa de cheia em uma bacia hidrográfica da região Alto Rio Grande. Rev Bras De Eng Agríc e Ambient 12(3):258–265

    Article  Google Scholar 

  • Silva Júnior RO, Queiroz JCB, Ferreira DBS, Tavares AL, Souza-Filho PWM, Guimaraes JTF, Rocha E (2017) Estimativa de precipitação e vazões médias para a bacia hidrográfica do rio Itacaiúnas (BHRI), Amazônia Oriental, Brasil (Estimation of Precipitation and average Flows for the Itacaiúnas River Watershed (IRW)–Eastern Amazonia, Brazil). Revista Bras De Geog Fís. 10(5):1638–1654

    Article  Google Scholar 

  • Siqueira VA, Paiva RC, Fleischmann AS, Fan FM, Ruhoff AL, Pontes PR, Collischonn W (2018) Toward continental hydrologic–hydrodynamic modeling in South America. Hydrol Earth Syst Sci 22(9):4815–4842

    Article  Google Scholar 

  • Sorribas MV, Paiva RC, Melack JM, Bravo JM, Jones C, Carvalho L, Costa MH (2016) Projections of climate change effects on discharge and inundation in the Amazon basin. Clim Change 136(3):555–570

    Article  Google Scholar 

  • Souza-Filho PWM, de Souza EB, Júnior ROS, Nascimento WR Jr, de Mendonça BRV, Guimarães JTF, Siqueira JO (2016) Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. J Environ Manage 167:175–184

    Article  Google Scholar 

  • USGS (2002) Standard for the analysis and processing of surface-water data and information using electronic methods. U.S Geological Survey, Reston, p 106

    Google Scholar 

  • Van Liew MW, Arnold JG, Garbrecht JD (2003) Hydrologic simulation on agricultural watersheds: choosing between two models. Trans ASAE 46(6):1539

    Article  Google Scholar 

  • Van Liew MW, Veith TL, Bosch DD, Arnold JG (2007) Suitability of SWAT for the conservation effects assessment project: comparison on USDA agricultural research service watersheds. J Hydrol Eng 12(2):173–189

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32(13):2088–2094

    Article  Google Scholar 

  • WMO World Meeorological Organization (2008) Methods of observation. Guide to hydrological practices hydrology from measurement to hydrological information vol 1 chap 2, 6th edn. WMO, Geneva, pp 24–27 (WMO: n. 168)

    Google Scholar 

  • WMO World Meteorological Organization (2010) Manual on stream gauging. Computation of discharge. WMO, Geneva

    Google Scholar 

  • Xiong F, Guo S, Liu P, Xu CY, Zhong Y, Yin J, He S (2019) A general framework of design flood estimation for cascade reservoirs in operation period. J Hydrol 577:124003

    Article  Google Scholar 

  • Yang W, Chen H, Xu CY, Huo R, Chen J, Guo S (2020) Temporal and spatial transferabilities of hydrological models under different climates and underlying surface conditions. J Hydrol 591:125276

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Vale Technological Institute for Sustainable Development for professional and logistical support.

Funding

The authors thank CAPES—financing code 001. The second author thanks CNPq for a research productivity grant, process no. 303542/2018-7. This work was carried out in the context of the Water Resources Project of the Itacaiúnas River Basin (BHRI) (Project RBRS000603.81), with funding from Vale SA, supported by the National Council for Scientific and Technological Development (CNPq Call 10/2018), provided to the first author. Office for research (PROPESP) and Foundation for Research Development (FADESP) of the Federal University of Pará through grant nº PAPQ 2021.

Author information

Authors and Affiliations

Authors

Contributions

CJCB, AMQM, PRMP, RBLC, ROSJ and MSS: performed the analysis and writing of this article, to which all authors contributed equally.

Corresponding author

Correspondence to Claudio José Cavalcante Blanco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work has no research with biological applications, in which case ethical approval does not apply.

Consent to participate

This work has no research with biological applications, in which case consent to participate does not apply.

Consent to publish

This work has no research with biological applications, in which case consent to publish does not apply.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo, A.M.Q., Blanco, C.J.C., Pontes, P.R.M. et al. Elaborating rating curves for implementation of the MGB hydrological model in a river basin, Amazon region, Brazil. Sustain. Water Resour. Manag. 8, 132 (2022). https://doi.org/10.1007/s40899-022-00715-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-022-00715-z

Keywords

Navigation