Skip to main content

Evaluation of the quality of groundwater for its appropriateness for irrigation purposes using Water Quality Index (WQI), Mchira-Teleghma aquifer case study, northeastern Algeria

Abstract

The Mio-Plio-Quaternary groundwater of Mchira-Teleghma suffers from an increasing rate of salinity especially in the northwestern part. To identify the reason for the water’s salinity and its aptitude for irrigation, physico-chemical analyses of 20 water samples, which were based on the different physical and chemical parameters (electric conductivity EC, pH, Ca2+, Mg2+, Na+, K+, HCO3, Cl, SO42−, NO3 and Sr2+), were carried out during the period of October 2015. This study showed disquieting anomalies of electric conductivity that reached the value of 4376.14 µS cm−1. The statistical analyses, the multivariate statistics: the principal component analysis, Q-mode cluster analyses, Sr2+/Ca2+ ratio and water type showed that the hydrochemistry of Mchira-Teleghma groundwater is controlled by the dissolution of carbonate rocks and the leaching of evaporite processes, which proved that these anomalies of the MPQ groundwater’s salinity of Mchira-Teleghma are mainly determined by the leaching of Triassic gypsum formations process. This hydrogeochemical process generates an unsuitable quality of water based on Wilcox’s and Water Quality Index’s methods, whereas Richard’s method classifies all water samples to C3S1 and C4S1 classes as they are recommended to be used with salt-tolerant species in well-drained and leached soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdesselam M, Mania J, Mudry J, Gélard JP, Chauve P, Lami H, Aigoun C (2000) Arguments hydrogéochimiques en faveur de Trias évaporitique non affleurant dans le massif du Djurdjura (dorsale kabyle, élément des Maghrébides). Rseau 13:155–166. https://doi.org/10.7202/705387ar

    Article  Google Scholar 

  2. Agoubi B, Souid F, Kharroubi A, Abdallaoui A (2016) Assessment of hot groundwater in an arid area in Tunisia using geochemical and fuzzy logic approaches. Environ Earth Sci 75:1163. https://doi.org/10.1007/s12665-016-6296-8

    Article  Google Scholar 

  3. Aubert G (1975) Les sols sodiques en Afrique du Nord. Annale de l’institut National. Agronomique. Alger

  4. Ayadi Y, Mokadem N, Besser H, Redhaounia B, Khelifi F, Harabi S, Nasri T, Hamed Y (2018) Statistical and geochemical assessment of groundwater quality in Teboursouk area (Northwestern Tunisian Atlas). Environ Earth Sci 77:208. https://doi.org/10.1007/s12665-018-7523-2

    Article  Google Scholar 

  5. Bakalowicz M (1988) La formation des travertins : aspects géochimiques. Essai de synthèse et discussion n°XVII, U.A.903. CNRS et ATP PIREN Aix-en-Provence

  6. Barkat A, Bouaicha F, Bouteraa O, Mester T, Ata B, Balla D, Rahal Z, Szabó G (2021) Assessment of complex terminal groundwater aquifer for different use of Oued Souf Valley (Algeria) using multivariate statistical methods, geostatistical modeling, and Water Quality Index. Water 13:1609. https://doi.org/10.3390/w13111609

    Article  Google Scholar 

  7. Belkhiri L, Mouni L (2013) Geochemical modeling of groundwater in the El Eulma area, Algeria. Desalin Water Treat 51:1468–1476. https://doi.org/10.1080/19443994.2012.699350

    Article  Google Scholar 

  8. Belkhiri L, Boudoukha A, Mouni L, Baouz T (2011) Statistical categorization geochemical modeling of groundwater in Ain Azel plain (Algeria). J Afr Earth Sc 59:140–148. https://doi.org/10.1016/j.jafrearsci.2010.09.007

    Article  Google Scholar 

  9. Ben Alaya M, Zemni T, Mamou A, Zargouni F (2014) Acquisition de salinité et qualité des eaux d’une nappe profonde en Tunisie: approche statistique et géochimique. Hydrol Sci J 59:395–419. https://doi.org/10.1080/02626667.2013.870663

    Article  Google Scholar 

  10. Bouaicha F, Dib H, Bouteraa O, Manchar N, Boufaa K, Chabour N, Demdoum A (2019) Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria. Acta Geochim 38:683–702. https://doi.org/10.1007/s11631-019-00324-2

    Article  Google Scholar 

  11. Bouteraa O, Mebarki A, Bouaicha F, Nouaceur Z, Laignel B (2019) Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria. Acta Geochim 38:796–814. https://doi.org/10.1007/s11631-019-00329-x

    Article  Google Scholar 

  12. Brinis N (2011) Caractérisation de la salinité d’un complexe aquifère en zone aride cas de l’aquifère d’el-Outaya région nord-ouest de Biskra. Algérie, faculté des sciences et de la technologie, département d’hydraulique et du génie civil, Doctorat en science, Université Mohamed Kheider–Biskra

  13. Brinis N, Boudouka A, Djaiz F (2014) Etude de la salinité des eaux souterraines dans les zones arides Cas de l’aquifère d’El-Outaya Région Nord-ouest de Biskra-Algerie. Int J Environ Water 3(1):44–51

    Google Scholar 

  14. Brown RM, McClelland NI, Deininger RA, Tozer RG (1970) A Water Quality Index: do we dare? Water Sewage Works 117(10):339–343

    Google Scholar 

  15. Chabour N, Dib H, Bouaicha F, Bechkit MA, Messaoud Nacer N (2021) A conceptual framework of groundwater flowpath and recharge in Ziban aquifer: south of Algeria. Sustain Water Resour Manag 7:36p. https://doi.org/10.1007/s40899-020-00483-8

    Article  Google Scholar 

  16. Foued B, Hénia D, Lazhar B, Nabil M, Nabil C (2017) Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. J Geol Soc India 90:226–232. https://doi.org/10.1007/s12594-017-0703-y

    Article  Google Scholar 

  17. Gouaidia L, Guefaifia O, Boudoukha A, LaidHemila M, Martin C (2012) Évaluation de la salinité des eaux souterraines utilisées en irrigation et risques de dégradation des sols : exemple de la plaine de Meskiana (Nord-Est Algérien). Physio-Geo. https://doi.org/10.4000/physio-geo.2632

    Article  Google Scholar 

  18. Haritash AK, Mathur K, Singh P, Singh SK (2017) Hydrochemical characterization and suitability assessment of groundwater in Baga-Calangute stretch of Goa, India. Environ Earth Sci 76:15. https://doi.org/10.1007/s12665-017-6679-5

    Article  Google Scholar 

  19. Horton RK (1965) An index number system for rating water quality. J Water Pollut Control Fed 37(3):300–305

    Google Scholar 

  20. Khedidja A, Boudoukha A (2015) Characterization of the salinity of the alluvial aquifer in the upper valley of Wadi Rhumel (eastern Algeria). Desalin Water Treat 56:629–637. https://doi.org/10.1080/19443994.2014.939856

    Article  Google Scholar 

  21. Khedidja A (2016) Caractérisation des paramètres hydrodynamiques de l’aquifère de Tadjnant–Chelghoum Laid et impact de la pollution des eaux de surface sur les eaux souterraines, Thèse de doctorat en science, Faculté de technologie, Département d’hydraulique, université de batna2

  22. Khelif S, Boudoukha A (2018) Multivariate statistical characterization of groundwater quality in Fesdis, East of Algeria. J Water Land Dev 37:65–74. https://doi.org/10.2478/jwld-2018-0026

    Article  Google Scholar 

  23. Kouadra R, Demdoum A, Chabour N, Benchikh R (2019) The use of hydrogeochemical analyses and multivariate statistics for the characterization of thermal springs in the Constantine area, Northeastern Algeria. Acta Geochim 38:292–306. https://doi.org/10.1007/s11631-018-0298-z

    Article  Google Scholar 

  24. Lebid H, Errih M, Boudjemline D (2016) Contribution of strontium to the study of groundwater salinity. Case of the alluvial plain of Sidi Bel Abbes (Northwestern Algeria). Environ Earth Sci 75:2000. https://doi.org/10.1007/s12665-016-5704-4

    Article  Google Scholar 

  25. Marghade D, Malpe DB, Zade AB (2011) Geochemical characterization of groundwater from northeastern part of Nagpur urban, Central India. Environ Earth Sci 62:1419–1430. https://doi.org/10.1007/s12665-010-0627-y

    Article  Google Scholar 

  26. Mebarki A (1994) Le barrage d’Hamman Grouz (haut Rhumel, Constantinois). Bilan et perspectives d’un aménagement hydraulique en zone semi-aride. Medit 80:15–22. https://doi.org/10.3406/medit.1994.2854

    Article  Google Scholar 

  27. Mebarki A (2005) Hydrologie des bassins de l’Est algérien: Ressources en eau, aménagement et environnement, Thèse de doctorat d’Etat, Faculté des sciences de la terre, de la géographie et de l’aménagement du territoire, Département de l’aménagement du territoire, Université Constantine1

  28. Mihoubi N (2009) Fonctionnement et de gestion hydrogéologique et hydrologique des ressources en eau du bassin du Hammam Grouz, Mémoire de magister, département des Sciences de la Terre, faculté des sciences de la terre, de la géographie et de l’aménagement du territoire, Université Mentouri Constantine

  29. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans AGU 25:914. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  30. Ravikumar P, Venkatesharaju K, Prakash KL, Somashekar RK (2011) Geochemistry of groundwater and groundwater prospects evaluation, Anekal Taluk, Bangalore Urban District, Karnataka, India. Environ Monit Assess 179:93–112. https://doi.org/10.1007/s10661-010-1721-z

    Article  Google Scholar 

  31. Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Agriculture handbook, vol 60. USDA, Washington D.C.

  32. Rodier J (2009) L’analyse de l’eau 9 èmeédition. Dunod, Paris, France

    Google Scholar 

  33. Schoeller H (1959) Hydrologie des régions arides - progrès recents, Organisation des Nations Unies pour l’Education, la science et la culture (UNESCO): place de Fontenoy, Paris-70 Imprimeries Oberthur. p. 127

  34. Shout H, Bouaicha F, Merrad Z (2020) Les ressources géothermiques du nord-est constantinois - étude comparative - cas de la région de Guelma et Telaghma (impact socio-économique et juridique). Sciences & technologie des hydrocarbures. Sonatrach-Devision Laboratoires (E&P/SONTRACH) N°02/Septembre 2020. Algérie

  35. Todd DKM, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, Hoboken

    Google Scholar 

  36. Vila J M (1977a) Cartegéologique de Sétif au 200000ème, avec sa notice explicative, Service de la carte géologique de l’Algérie

  37. Vila J M (1977b) Cartes géologiques de Constantine au 200000ème, avec sa notice explicative, Service de la cartegéologique de l’Algérie

  38. Wilcox LV (ed) (1948) The quality of water for agricultural use. Edit. U.S Department of Agriculture, Technical Bulletin, vol 962, Washington (USA)

  39. Wilcox LV (1955) Classification and use of irrigation waters. U.S. Department of Agriculture, Circular 969, Washington, D.C.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Foued Bouaicha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohamadi, A., Demdoum, A., Bouaicha, F. et al. Evaluation of the quality of groundwater for its appropriateness for irrigation purposes using Water Quality Index (WQI), Mchira-Teleghma aquifer case study, northeastern Algeria. Sustain. Water Resour. Manag. 7, 97 (2021). https://doi.org/10.1007/s40899-021-00571-3

Download citation

Keywords

  • Water Quality Index
  • Hydrogeochemical process
  • Salinity
  • Triassic gypsum
  • Mchira-Teleghma aquifer and irrigation