Skip to main content

Characterisation and quality assessment of surface and groundwater in and around Lake Bosumtwi impact craton (Ghana)

Abstract

Conventional graphical methods have been used to classify water in Lake Bosumtwi and groundwater around the lake. The study also assessed the suitability of these water resources for agricultural use. Results indicate slightly acidic, moderately hard to very hard groundwater with alkaline earth concentrations exceeding alkali metals. In contrast, the lake water is alkaline, showing alkalis in excess over alkaline earth metals. Weak acids exceed strong acids in both lake/groundwater. Rock weathering largely controls groundwater and lake water chemical compositions, resulting mainly in Ca–Mg–HCO3 groundwater and Na–HCO3 lake water types. Thus, suggesting that there is no apparent incipient relationship, which benefits the primary aquifer system in terms of recharge. Water quality indices suggest groundwater of good to excellent quality for human consumption and other domestic use. An evaluation of lake/groundwater based on salinity, sodicity and bicarbonate hazard reveals that the groundwater is generally suitable for irrigation whiles the lake water is not suitable for irrigation. However, the lake water may be used in generous amounts on highly permeable soils and salt-tolerant crops under special soil and water management practices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5:
Fig. 6:
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Adom D (2018) The human impact and the aquatic biodiversity of lake Bosomtwe: renaissance of the cultural traditions of Abono (Ghana). Transylv Rev Syst Ecol Res 20(1):87–110. https://doi.org/10.1515/trser-2018-0007

    Article  Google Scholar 

  2. Adu S, Darko EO, Awudu AR, Adukpo OK (2011) Preliminary study of natural radioactivity in the lake Bosumtwi Basin. Res J Environ Earth Sci, 3:463–8. http://maxwellsci.com/print/rjees/v3-463-468.pdf.

  3. Adu-Boahen K, Dei Leud A, Antwi KB, Adu-Boahen AO (2015) Shoreline change detection of lake Bosomtwe, Ghana, evidence from historical and meteorological records. J Arts Soc Sci 3(1):18–42

    Google Scholar 

  4. Adu–Boahen K, Emmanuel MA, Kwaku KK, Osman A (2014) Socio-economic impact of Lake Bosomtwe shoreline changes on catchment residents in Ghana. Int J Sci Res Publ 674

  5. Anku YS, Banoeng-Yakubo B, Asiedu DK, Yidana SM (2009) Water quality analysis of Groundwater in crystalline basement rocks. North Ghana Environ Geol 58(5):989–997

    Google Scholar 

  6. Appelo CA, Postma D (2005) Geochemistry, Groundwater and pollution, 2nd edn. Balkema, Rotterdam

    Google Scholar 

  7. Asante J, Kreamer DK (2018) Identifying local and regional Groundwater in basins: chemical and stable isotopic attributes of multivariate classification of hydrochemical data, the Lower Virgin River Basin, Nevada, Arizona and Utah, USA. Isot Environ Health Stud 54(4):370–391. https://doi.org/10.1080/10256016.2018.1444611

    Article  Google Scholar 

  8. Ballesteros-Navarro BJ, Díaz-Losada E, Domínguez-Sánchez JA, Grima-Olmedo J (2019) Methodological proposal for conceptualization and classification of interactions between Groundwater and surface water. Water Policy 21(3):623–642. https://doi.org/10.2166/wp.2019.091

    Article  Google Scholar 

  9. Balugani E, Lubczynski MW, Reyes-Acosta L (2017) Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland. J Hydrol 547:54–66. https://doi.org/10.1016/j.jhydrol.2017.01.042

    Article  Google Scholar 

  10. Banoeng-Yakubo B, Skjernaa L (2000) Application of remote sensing and geographical information system to hydrogeological studies in Upper West Region, Ghana. In Groundwater: past achievements and future challenges pp. 73–79.

  11. Banoeng-Yakubu B, Yidana SM, Ajayi JO, Loh Y, Aseidu D (2011) Hydrogeology and groundwater resources of Ghana: a review of the hydrogeology and hydrochemistry of Ghana. Potable Water Sanitation 142

  12. Bauder TA, Waskom RM, Sutherland PL, Davis JG (2011) Irrigation water quality criteria. Fact sheet (Colorado State University. Extension). Crop series, no. 0.506.

  13. Bjørklund G, Chartrand MS, Aaseth J (2017) Manganese exposure and neurotoxic effects in children. Environ Res 155:380–384. https://doi.org/10.1016/j.envres.2017.03.003

    Article  Google Scholar 

  14. Boamah D, Koeberl C (2002) Geochemistry of soils from the Bosumtwi impact structure, Ghana, and relationship to radiometric airborne geophysical data. Impacts in Precambrian Shields. Springer, Berlin, Heidelberg, pp 211–255

    Chapter  Google Scholar 

  15. Boateng TK, Opoku F, Acquaah SO, Akoto O (2016) Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality Ghana. Environ Earth Sci 75(6):489. https://doi.org/10.1007/s12665-015-5105-0

    Article  Google Scholar 

  16. Busico G, Cuoco E, Kazakis N et al (2018) Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environ Pollut 234:260–269. https://doi.org/10.1016/j.envpol.2017.11.053

    Article  Google Scholar 

  17. Chadha DK (1999) A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol J 7(5):431–439

    Article  Google Scholar 

  18. Chapman DV (Ed) (1996) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. CRC Press

  19. Chen P, Bornhorst J, Aschner M (2019) Manganese metabolism in humans. https://doi.org/10.25932/publishup-42743

  20. Collins ME, Kuehl RJ (2000) Organic matter accumulation and organic soils. Lewis Publishers, Boca Raton, pp 137–162

    Google Scholar 

  21. Cronan CS (2018) Mineral Weathering. Ecosystem Biogeochemistry. Springer, Cham, pp 87–100

    Chapter  Google Scholar 

  22. Daliakopoulos IN, Tsanis IK, Koutroulis A et al (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739. https://doi.org/10.1016/j.scitotenv.2016.08.177

    Article  Google Scholar 

  23. Diaconu A, Balu OF, Gole I, Mogos LP (2019) Overview of access to a clean water. Calitatea 20(S2):234–239

    Google Scholar 

  24. Doneen LD (1964) Water quality for agriculture. Department of Irrigation, University of California, Davis, p 48

  25. Egbi CD, Anornu G, Appiah-Adjei EK et al (2018) Evaluation of water quality using hydrochemistry, stable isotopes, and water quality indices in the Lower Volta River Basin of Ghana. Environ Dev Sustain 21:3033–3063. https://doi.org/10.1007/s10668-018-0180-5

    Article  Google Scholar 

  26. Fetter CW (1994) Applied hydrogeology. Macmillan College Publishing Company, New York

  27. Flusche MA, Seltzer G, Rodbell D, Siegel D, Samson S (2005) Constraining water sources and hydrologic processes from the isotopic analysis of water and dissolved strontium, Lake Junin Peru. J Hydrol 312(1–4):1–3

    Article  Google Scholar 

  28. Freeze AR, Cherry JA (1979) Groundwater. Prentice-Hall, New Jersey

  29. Garrels RM, Mackenzie FT (1967) Origin of the chemical compositions of some springs and lakes. In: Equilibrium concepts in natural-water chemistry. Advances in Chemistry Series. American Chemical Society, (67), 222–242

  30. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090

    Article  Google Scholar 

  31. Hirdes W, Davis DW, Eisenlohr BN (1992) Reassessment of Proterozoic granitoid ages in Ghana on the basis of U/Pb zircon and monazite dating. Precambr Res 56(1–2):89–96

    Article  Google Scholar 

  32. Jones WB (1985) The origin of the Bosumtwi crater, Ghana—an historical review. Proc Geol Assoc 96(3):275–284

    Article  Google Scholar 

  33. Jones WB, Bacon M, Hastings DA (1981) The Lake Bosumtwi impact crater, Ghana. Geol Soc Am Bull 92(6):342–349

    Article  Google Scholar 

  34. Karikari F, Ferriere L, Koeberl C, Reimold WU, Mader D (2007) Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure Ghana. Meteoritics Planet Sci 42(4–5):513–540

    Article  Google Scholar 

  35. Karp T, Milkereit B, Janle P, Danuor SK, Pohl J, Berckhemer H, Scholz CA (2002) Seismic investigation of the Lake Bosumtwi impact crater: preliminary results. Planet Space Sci 50(7–8):735–743

    Article  Google Scholar 

  36. Kattel GR (2019) State of future water regimes in the world’s river basins: balancing the water between society and nature. Crit Rev Environ Sci Technol 49(12):1107–1133. https://doi.org/10.1080/10643389.2019.1579621

    Article  Google Scholar 

  37. Kesse GO (1985) The mineral and rock resources of Ghana.

  38. Koeberl C, Bottomley R, Glass BP, Storzer D (1997) Geochemistry and age of Ivory Coast tektites and microtektites. Geochim Cosmochim Acta 61(8):1745–1772

    Article  Google Scholar 

  39. Koeberl C, Reimold W, Blum J, Chamberlain CP (1998) Petrology and geochemistry of target rocks from the Bosumtwi impact structure, Ghana, and comparison with Ivory Coast tektites. Geochim Cosmochim Acta 62(12):2179–2196. https://doi.org/10.1016/S0016-7037(98)00137-9

    Article  Google Scholar 

  40. Koeberl C, Brandstätter F, Glass BP, Hecht L et al (2007a) Uppermost impact fallback layer in the Bosumtwi crater (Ghana): Mineralogy, geochemistry, and comparison with Ivory Coast tektites. Meteorit Planet Sci 42(4–5):709–729

    Article  Google Scholar 

  41. Koeberl C, Milkereit B, Overpeck JT, Scholz CA et al (2007b) An international and multidisciplinary drilling project into a young complex impact structure: The 2004 ICDP Bosumtwi Crater Drilling Project—an overview. Meteorit Planet Sci 42(4–5):483–511. https://doi.org/10.1111/j.1945-5100.2007.tb01057.x

    Article  Google Scholar 

  42. Koffi KV, Obuobie E, Banning A, Wohnlich S (2017) Hydrochemical characteristics of groundwater and surface water for domestic and irrigation purposes in Vea catchment Northern Ghana. Environ Earth Sci 76(4):185. https://doi.org/10.1007/s12665-017-6490-3

    Article  Google Scholar 

  43. Kumar PS, James EJ (2019) Geostatistical and geochemical model-assisted hydrogeochemical pattern recognition along the groundwater flow paths in Coimbatore district, South India. Environ Dev Sustain 21:369–384. https://doi.org/10.1007/s10668-017-0043-5

    Article  Google Scholar 

  44. Kumar M, Kumari K, Ramanathan AL, Saxena R (2007) A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab. India Environ Geol 53(3):553–574. https://doi.org/10.1007/s00254-007-0672-3

    Article  Google Scholar 

  45. Leube A, Hirdes W, Mauer R, Kesse GO (1990) The early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization. Precambr Res 46(1–2):139–165. https://doi.org/10.1016/0301-9268(90)90070-7

    Article  Google Scholar 

  46. Loh YSA, Yidana SM, Banoeng-Yakubo B, Sakyi PA et al (2016) Determination of the mineral stability field of evolving Groundwater in the Lake Bosumtwi impact crater and surrounding areas. J Afr Earth Sc 121:286–300. https://doi.org/10.1016/j.jafrearsci.2016.06.007

    Article  Google Scholar 

  47. Macgregor D (1937) Results of a hydrographic survey of Lake Bosumtwi

  48. McLean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. InGroundwater: past achievements and future challenges, pp. 567–573. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6178313

  49. Mensah A, Sanful P, Agyeman Y, Trolle D (2018) Sustainable ecosystem services of Lake Bosumtwi, Ghana–implications for livelihoods and food security. Nat Faune 32(2):58–61

    Google Scholar 

  50. Milovanovic M (2007) Water quality assessment and determination of pollution sources along the Axios/Vardar River, Southeastern Europe. Desalination 213(1–3):159–173

    Article  Google Scholar 

  51. Nematollahi MJ, Ebrahimi P, Razmara M, Ghasemi A (2016) Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi Iran. Environ Monit Assess 188(1):2. https://doi.org/10.1007/s10661-015-4968-6

    Article  Google Scholar 

  52. Obiefuna GI, Orazulike DM (2011) The hydrochemical characteristics and evolution of Groundwater in semiarid Yola Area, Northeast, Nigeria. Res J Environ Earth Sci 3(4):400–416

    Google Scholar 

  53. Prakash S, Wieringa P, Ros B, Poels E et al (2005) Potential of ecotourism development in the Lake Bosumtwi Basin: A case study of Ankaase in the Amansie East District. Ghana''. Working Paper

  54. Reimold WU, Brandt D, Koeberl C (1998) Detailed structural analysis of the rim of a large, complex impact crater: Bosumtwi crater. Ghana Geol 26(6):543–546. https://doi.org/10.1130/0091-7613(1998)026%3C0543:DSAOTR%3E2.3.CO;2

    Article  Google Scholar 

  55. Rotiroti M, Zanotti C, Fumagalli L et al (2019) Multivariate statistical analysis supporting the hydrochemical characterization of Groundwater and surface water: a case study in northern Italy. Rend Online Soc Geol Ital 47:90–96. https://doi.org/10.3301/ROL.2019.17

    Article  Google Scholar 

  56. Rouabhia A, Baali F, Fehdi C, Kherici N, Djabri L (2009) Hydrochemical and isotopic investigation of a sandstone aquifer groundwater in a semi arid region, El Ma El Abiod. Algeria Environ Geol 57(8):1699–1705. https://doi.org/10.1007/s00254-008-1451-5

    Article  Google Scholar 

  57. Russell J, Talbot MR, Haskell BJ (2003) Mid-holocene climate change in Lake Bosumtwi, Ghana. Quat Res 60(2):133–141

    Article  Google Scholar 

  58. Sahu P, Sikdar PK (2008) Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal. India Environ Geol 55(4):823–835. https://doi.org/10.1007/s00254-007-1034-x

    Article  Google Scholar 

  59. Sakyi PA, Asare R, Fynn OF, Osiakwan GM (2016) Assessment of groundwater quality and its suitability for domestic and agricultural purposes in parts of the Central Region, Ghana. West Afr J Appl Ecol 24(2):67–89

    Google Scholar 

  60. Sayyad-Amin P, Borzouei A, Jahansooz MR, Parsaeiyan M (2016) Root biochemical responses of grain and sweet-forage sorghum cultivars under saline conditions at vegetative and reproductive phases. Braz J Bot 39(1):115–122. https://doi.org/10.1007/s40415-015-0221-3

    Article  Google Scholar 

  61. Schilling KE, Li Z, Zhang YK (2006) Groundwater–surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa. J Hydrol 327(1–2):140–150. https://doi.org/10.1016/j.jhydrol.2005.11.014

    Article  Google Scholar 

  62. Singh S, Raju NJ, Ramakrishna C (2015) Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi region, Uttar Pradesh, India. J Water Resour Protect 7(07): 572. http://creativecommons.org/licenses/by/4.0/

  63. Turner BF, Gardner LR, Sharp WE (1996a) The hydrology of Lake Bosumtwi, a climate-sensitive lake in Ghana West Africa. J Hydrol 183(3–4):243–261. https://doi.org/10.1016/0022-1694(95)02982-6

    Article  Google Scholar 

  64. Turner BF, Gardner LR, Sharp WE, Blood ER (1996b) The geochemistry of Lake Bosumtwi, a hydrologically closed basin in the humid zone of tropical Ghana. Limnol Oceanogr 41(7):1415–1424. https://doi.org/10.4319/lo.1996.41.7.1415

    Article  Google Scholar 

  65. White AF, Brantley SL (Eds) (2018) Chemical weathering rates of silicate minerals (Vol. 31). Walter de Gruyter GmbH & Co KG

  66. Wilcox L (1955) Classification and use of irrigation waters. US Department of Agriculture

  67. World Health Organisation (2017) Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, ISBN 978–92–4–154995–0. https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng.pdf?sequence ¼1. Accessed 25 July 2020

  68. Wu Z, Wang X, Chen Y, Cai Y, Deng J (2018) Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci Total Environ 612:914–922. https://doi.org/10.1016/j.scitotenv.2017.08.293

    Article  Google Scholar 

  69. Yidana SM, Ophori D, Banoeng-Yakubo B (2008) Hydrochemical evaluation of the Voltaian system—the Afram Plains area, Ghana. J Environ Manag 88(4):697–707

    Article  Google Scholar 

  70. Yidana SM, Banoeng-Yakubo B, Sakyi PA (2012a) Identifying key processes in the hydrochemistry of a basin through the combined use of factor and regression models. J Earth Syst Sci 121(2):491–507

    Article  Google Scholar 

  71. Yidana SM, Bawoyobie P, Sakyi P, Fynn OF (2018) Evolutionary analysis of groundwater flow: Application of multivariate statistical analysis to hydrochemical data in the Densu Basin, Ghana. J Afr Earth Sc 138:167–176. https://doi.org/10.1016/j.jafrearsci.2017.10.026

    Article  Google Scholar 

  72. Yidana SM, Ophori D, Banoeng-Yakubo B, Samed AA (2012) A factor model to explain the hydrochemistry and causes of fluoride enrichment in Groundwater from the middle Voltaian sedimentary aquifers in the northern region, Ghana. http://ugspace.ug.edu.gh/handle/123456789/26977

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Millicent Obeng Addai.

Ethics declarations

Conflict of interest

We declare there is no conflict of interest in this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loh, Y.S.A., Addai, M.O., Fynn, O.F. et al. Characterisation and quality assessment of surface and groundwater in and around Lake Bosumtwi impact craton (Ghana). Sustain. Water Resour. Manag. 7, 81 (2021). https://doi.org/10.1007/s40899-021-00563-3

Download citation

Keywords

  • Lake Bosumtwi
  • Water quality
  • Irrigation
  • Birimian