Skip to main content

Experiences of karstic zones identification using dissolved oxygen as a tracer in the aquifer of Quintana Roo, Mexico

Abstract

The study of karstic aquifers is a challenge because of their heterogeneous and anisotropic nature; the groundwater flow in these systems often cannot be explained using Darcian theory. Many techniques (direct and indirect) have been used for the characterization of karstic aquifers. Dissolved oxygen alteration method (DOAM) consists in injecting air into wells and tracing the evolution of this parameter over time; this practice offers advantages because it is cheap and harmless. Previous experiences show acceptable results in the identification of fractures and preferential flow in heterogeneous aquifers. The air injection used during the drilling process (rotary perforation with air cleaning) could be used as a tracer. This research monitored the physical parameters in groundwater after drilling wells, especially the dissolved oxygen. Besides, karstic zones have been identified using video surveys in drilling wells. Finally, the results using the DOAM method were contrasted with the physical evidence of karstic zones to compare the technique’s accuracy. Results show that DOAM offers a qualitative approach to the evidence of karstic zones and preferential groundwater flow. DOAM can be considered as a useful choice to study the karstification influence on the aquifer groundwater flow and transport in karstic aquifers. The identification of these zones areis important for the design of supply and wastewater projects; therefore, this approach represents an improvement in the wells’ design process in aquifers with similar conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aguayo JEC, Bello RM, del Vecchio MA, et al (1980) Estudio sedimentologico en el area Tulum-Cancún-Isla Mujeres, Estado de Quintana Roo, México. Bol Soc Geol Mex XLI https://doi.org/10.18268/BSGM1980v41n1a2

  2. Back W, Hanshaw BB, Herman JS, Van Driel JN (1986) Differential dissolution of a Pleistocene reef in the groundwater mixing zone of coastal Yucatan, Mexico. Geology https://doi.org/10.1130/0091-7613(1986)14<137:DDOAPR>2.0.CO;2

  3. Bauer-Gottwein P, Gondwe BRN, Charvet G et al (2011) Review: The Yucatan Peninsula karst aquifer, Mexico. Hydrogeol J 19:507–524. https://doi.org/10.1007/s10040-010-0699-5

    Article  Google Scholar 

  4. Canul-Macario C, González-Herrera R, Sánchez-Pinto I, Graniel-Castro E (2019) Contribution to the evaluation of solute transport properties in a karstic aquifer (Yucatan, Mexico). Hydrogeol J 27:1683–1691. https://doi.org/10.1007/s10040-019-01947-8

    Article  Google Scholar 

  5. Chlebica DW, Robbins GA (2013) Altering dissolved oxygen to determine flow conditions in fractured bedrock wells. Groundw Monit Remediat 33:100–107. https://doi.org/10.1111/gwmr.12019

    Article  Google Scholar 

  6. CONAGUA (2012) Programa Hídrico Regional Visión 2030 (Regional Hydric Program: 2030 Vision). Natural Resources and Environmental Bureau . CDMX, Mexico City

    Google Scholar 

  7. CONAGUA (2018) Estadísticas del agua en México 2018 (Mexican water statics 2018). Coyoacan . CDMX, Mexico

    Google Scholar 

  8. Coutino A, Stastna M, Kovacs S, Reinhardt E (2017) Hurricanes ingrid and manuel (2013) and their impact on the salinity of the Meteoric Water Mass, Quintana Roo, Mexico. J Hydrol 551:715–729. https://doi.org/10.1016/j.jhydrol.2017.04.022

    Article  Google Scholar 

  9. Divine CE, McDonnell JJ (2005) The future of applied tracers in hydrogeology. Hydrogeol J 13:255–258. https://doi.org/10.1007/s10040-004-0416-3

    Article  Google Scholar 

  10. Fiorillo F, Malik P (2019) Hydraulic Behavior of Karst Aquifers. Water (Switzerland) 11:10–15. https://doi.org/10.3390/w11081563

    Article  Google Scholar 

  11. Fuentes-Diaz M (2007) La desalación del agua. del IMTA, Gac

    Google Scholar 

  12. Gondwe BRN, Merediz-Alonso G, Bauer-Gottwein P (2011) The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst. J Hydrol 400:24–40. https://doi.org/10.1016/j.jhydrol.2011.01.023

    Article  Google Scholar 

  13. Hanshaw BB, Back W (1979) Major geochemical processes in the evolution of carbonate-aquifer systems. Dev Water Sci. https://doi.org/10.1016/S0167-5648(09)70022-X

    Article  Google Scholar 

  14. Hanshaw BB, Back W, Deike RG (1971) A geochemical hypothesis for dolomitization by ground water. Econ Geol. https://doi.org/10.2113/gsecongeo.66.5.710

    Article  Google Scholar 

  15. Hartmann A, Goldscheider N, Wagener T et al (2014) Karst water resources in a changing world: Review of hydrological modeling approaches. Rev Geophys 52:218–242. https://doi.org/10.1002/2013RG000443

    Article  Google Scholar 

  16. JazayeriNoushabadi MR, Jourde H, Massonnat G (2011) Influence of the observation scale on permeability estimation at local and regional scales through well tests in a fractured and karstic aquifer (Lez aquifer, Southern France). J Hydrol 403:321–336. https://doi.org/10.1016/j.jhydrol.2011.04.013

    Article  Google Scholar 

  17. JICA (2004) Capítulo 12. Tratamiendo de aguas residuales tipo urbano. In: KOKUSAI KOGYO CO. L (ed) Estudio de Manejo de Saneamiento Ambiental en la Costa del Estado de Quintana Roo en los Estados Unidos Mexicanos, KOKUSAI KO. KOKUSAI KOGYO CO., LTD, Othon P. Blanco, Q ROO, México, p 89

  18. Kovacs SE, Reinhardt EG, Stastna M et al (2017) Hurricane Ingrid and Tropical Storm Hanna’s effects on the salinity of the coastal aquifer, Quintana Roo, Mexico. J Hydrol 551:703–714. https://doi.org/10.1016/j.jhydrol.2017.02.024

    Article  Google Scholar 

  19. Rose S, Long A (1988) Monitoring dissolved oxygen in ground water: some basic considerations. Groundw Monit Remediat 8:93–97. https://doi.org/10.1111/j.1745-6592.1988.tb00981.x

    Article  Google Scholar 

  20. Sánchez Pinto IA, Cervantes-Martínez A, González Herrera, RA et al. (2015) Evidencia de flujo preferencial al mar, del Cenote Caletita, en Cozumel, México [Evidence of preferential flow to the sea from the Cenote Caletita, in Cozumel, Mexico]. Ingeniería 19: 1–12 ISSN 1665-529–X

    Google Scholar 

  21. Servicio Geológico Mexicano (1996) Carta Geológica Minera: Cancún F16–8. Servicio Geológico Mexicano, Mexico City

    Google Scholar 

  22. Servicio Geológico Mexicano (1997) Carta Geológica Minera: Cozumel F19–11. Servicio Geológico Mexicano, Mexico City, México

  23. Stevanović Z (2015) Karst Aquifers—Characterization and Engineering. Springer International Publishing, Cham

    Book  Google Scholar 

  24. Sundell J, Norberg T, Haaf E, Rosén L (2019) Economic valuation of hydrogeological information when managing groundwater drawdown. Hydrogeol J 27:1111–1130. https://doi.org/10.1007/s10040-018-1906-z

    Article  Google Scholar 

  25. Vitale SA, Robbins GA (2017) Measuring flow rate in crystalline bedrock wells using the dissolved oxygen alteration method. Groundwater 55:588–592. https://doi.org/10.1111/gwat.12512

    Article  Google Scholar 

  26. Vitale SA, Robbins GA, Romanowicz E (2019) Identifying cross-well fracture connections using the dissolved oxygen alteration method. J Hydrol 572:781–789. https://doi.org/10.1016/j.jhydrol.2019.03.070

    Article  Google Scholar 

  27. Worthington SRH (2015) Diagnostic tests for conceptualizing transport in bedrock aquifers. J Hydrol 529:365–372. https://doi.org/10.1016/j.jhydrol.2015.08.002

    Article  Google Scholar 

  28. Young C, Martin JB, Branyon J et al (2018) Effects of short-term variations in sea level on dissolved oxygen in a coastal karst aquifer, Quintana Roo, Mexico. Limnol Oceanogr 63:352–362. https://doi.org/10.1002/lno.10635

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Mexican Hydrogeologist Association (AGM, as an acronym in Spanish) for motivating the publication of this research under the 12th Groundwater National Congress carried on November, 2019. We are also very grateful to the Associate Editor and reviewers whose valuable comments contributed to improving this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miguel Villasuso-Pino.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 77 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villasuso-Pino, M., Canul-Macario, C., Baldazo-Escobedo, G. et al. Experiences of karstic zones identification using dissolved oxygen as a tracer in the aquifer of Quintana Roo, Mexico. Sustain. Water Resour. Manag. 7, 84 (2021). https://doi.org/10.1007/s40899-021-00561-5

Download citation

Keywords

  • Karstic aquifers
  • Dissolved oxygen alteration method
  • Karstic zone identification