Skip to main content

Advertisement

Log in

A conceptual framework of groundwater flowpath and recharge in Ziban aquifer: south of Algeria

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

The Zyban aquifers (southern Algeria) are an important source of groundwater and are mainly found in limestone and dolomite from the Senono-Eocene. To be able to assess the effects of overuse of the Zeban groundwater, it is necessary to understand the origin of the recharge and determine its path out of the recharge zones. This study aims to better understand the flow path and replenishment areas using hydrology. For this purpose, 145 water samples were collected and analyzed for the determination of major ions and isotopes (18O, 2H and 3H). The isotope analysis of hydrogen, oxygen and tritium allowed a certain distinction between the origin and the mixture of water. The study area is located in the fault corridor of the South Atlas, a network of migration and folding defects that leads to a complex structure characterized by the subdivision of the formations and the variety of facies. The regional flow pattern is mainly influenced by the topography, and this is through the distribution of supply and flow, which is produced by transport at many depths and levels of distribution (local or regional). The rocky nature and the severe fractures are responsible for the division of the hydrogeological units and play an important role in the dynamics and transport of the groundwater. The hydrodynamic analysis shows the dominance of regional hydrogeology in terms of geological nature and structure. This is supported by a hydrochemical signal showing the distribution and evolution of the elements according to the structural and geological scheme (evolution from calcium bicarbonate facies to calcium sulphate medium facies).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abchiche M et al (1999) Etude hydrogéologique de la vallée de Oued Abdi et Bouzina (w. Batna). Sonatrach, division opération, Hassi-Messaoud, Rapport, p 36p

    Google Scholar 

  • Abdennour MA, Douaoui A, Barrena J et al (2020) Geochemical characterization of the salinity of irrigated soils in arid regions (Biskra, SE Algeria). Acta Geochim. https://doi.org/10.1007/s11631-020-00426-2

    Article  Google Scholar 

  • Afonso MJ, Freitas L, Chaminé HI (2019) Groundwater recharge in urban areas (Porto, NW Portugal): the role of GIS hydrogeology mapping. Sustain Water Resour Manag 5:203–216. https://doi.org/10.1007/s40899-019-00302-9

    Article  Google Scholar 

  • Agence National des Ressources Hydriques (A.N.R.H.), 1980. Carte hydrogéologique de Biskra ; Notice explicative. Service hydrogéologie, p 51

  • APHA (2005) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, pp 1–467

    Google Scholar 

  • Baba O, Sy M (2005) Recharge et paléorecharge du Système Aquifère du Sahara Septentrional. Thèse Doctorat en Géologie, Univ Tunis, El Manar, p 261p

    Google Scholar 

  • Belhai M, Fujimitsu Y, Bouchareb-Haouchine FZ et al (2016) Hydrogeochemical and isotope geochemical study of northwestern Algerian thermal waters. Arab J Geosci 9:169. https://doi.org/10.1007/s12517-015-2252-2

    Article  Google Scholar 

  • Bellion JC (1973) Etude géologique et hydrogéologique de la partie occidentale des monts de Bellezma. Thèse 3eme cycle, Paris VI, p.169

  • Benazzouz MT (2003) A new chronologie of upper Holocène aeolian sands in the Zibans range, Algéria. Suppl. Geogr. Fis. Dinam. Quat. pp 47–54

  • Benmoussa Y, Remini B, Remaoun M (2020) Quality assessment and hydrogeochemical characteristics of groundwater in Kerzaz and Beni Abbes along Saoura valley, southwest of Algeria. Appl Water Sci 10:170. https://doi.org/10.1007/s13201-020-01256-6

    Article  Google Scholar 

  • Bense VF, Person MA, Chaudhary K, You Y, Cremer N, Simon S (2008) Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers. Geophys Res Lett 35(24):1

    Article  Google Scholar 

  • Bhagwat TN, Hegde VS, Shetty A (2018) Application of remote sensing and GIS for identification of potential ground water recharge sites in Semi-arid regions of Hard-rock terrain, in north Karnataka, South India. Sustain Water Resour Manag 4:1063–1076. https://doi.org/10.1007/s40899-018-0244-6

    Article  Google Scholar 

  • Bouaicha F, Dib H, Bouteraa O et al (2019) Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria. Acta Geochim 38:683–702. https://doi.org/10.1007/s11631-019-00324-2

    Article  Google Scholar 

  • Bouchiba D (1992) Hydrogéologie pétrolière du Hodna et de l’Atalas saharien central. Rapport final, SONATRACH Division exploration, Algiers, p 45

    Google Scholar 

  • Bouteraa O, Mebarki A, Bouaicha F et al (2019) Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria. Acta Geochim 38:796–814. https://doi.org/10.1007/s11631-019-00329-x

    Article  Google Scholar 

  • Bredehoeft J, Durbin T (2009) Ground water development: the time to full capture problem. Ground Water 47(4):506–514

    Article  Google Scholar 

  • Brinis N et al (2015) Analyse statistique et geochimique de la dynamique des parametres physico-chimiques des eaux souterraines du synclinal de ghassira Algerie orientale. Larhyss J 22:123–137

    Google Scholar 

  • Brives A (1924) Notes géologiques sur les Ziban Bull Serv Carte géologique d’Algérie. p 45

  • Busson G (1971) Le mésozoique saharien, 1ére et 2éme partie. Essai de synthèse des données des sondages algéro-tunisiens. C.R.Z.A., série géologie, N° 11, Edition CNRS. p. 811

  • Busson G (1989) Dynamique sédimentaire de plate-forme épicontinentale: Le Crétacé moyen du Sahara algéro-tunisien, Editions Technip, pp 125–144.Sc., Paris, 238

  • Caratini C (1972) Le passage Jurassique Crétacé dans l’atlas saharien et les régions voisines (Algérie). Fr. B.R.G.M Mem, Algérie, p 71p

    Google Scholar 

  • Chabour N (2006) Hydrogéologie des domaines de transition entre l’Atlas saharien et la plateforme saharienne à l’Est de l’Algérie. Thèse Doctorat d’Etat, Université de Constantine, Algérie, p 176

    Google Scholar 

  • Chabour N (2012) Caractérisation des aquifères karstiques en zone aride et semi-arides, sous contexte de forte hétérogénéité structurale dans la région des Zibans. J Hydrocarb Min Environ Res 3(2):7–13

    Google Scholar 

  • Conrad G, Fontes JC (1970) Hydrologie isotopique du Sahara nord-occidental (Isotope hydrology of the north-western Sahara). Isotope Hydrol 1970, IAEA, Vienna. pp 405–419.

  • Cornet A et al (1959) Sur la fosse Sud-Aurésienne. CR Somm Soc Geol, France, pp 83–84

    Google Scholar 

  • Craig H (1961) Isotopique variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Curewitz D, Karson JA (1997) Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J Volcanol Geotherm Res 79:149–168

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  • Dennehy KF, Reilly TE, Cunningham WL (2015) Groundwater availability in the United States: the value of quantitative regional assessments. Hydrogeol J 23:1629–1632

    Article  Google Scholar 

  • Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) (2009) Gestion Intégrée des Ressources en Eau, Programme de cooperation thechnique algéro—allemande, Rapport partie isotopie. p. 5

  • Eaton TT, Anderson MP, Bradbury KR (2007) Fracture control of ground water flow and water chemistry in a rock aquitard. Groundwater 45(5):601–615. https://doi.org/10.1111/j.1745-6584.2007.00335.x

    Article  Google Scholar 

  • Edmunds WM, Shand P, Guendouz A, Moulla AS, Mamou A, Zouari K (1997) Recharge characteristics and groundwater quality of the Grand Erg Oriental basin. Final Report, EC (Avicenne) Contract CT93AVI0015, BGS, Technical Report, WD/97/46R, Hydrogeology series. BGS, Wallingford, UK

  • Edmunds WM, Guendouz A, Mamou A, Moulla A, Shand P, Zouari K (2003) Groudwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18(6):805–822

    Article  Google Scholar 

  • Entreprise Nationale de Géophysique (E.NA.GEO) (1983) Rapport de l’étude géophysique par prospection éléctrique de la region de Biskra. p.55

  • Flint LE, Flint AL (2007) Regional analysis of ground-water recharge, U.S. Geological Survey, Professional Paper 1703- Groundwater Recharge in the Arid and Semiarid Southwestern united State- Chapter B, p. 29–60

  • Fontes J-CH, Edmunds WM (1989) The use of environmental isotope techniques in arid zone hydrology- a critical review, IHP-III, project 5.2, UNESCO, Paris, pp 1–75

  • Foued B, Hénia D, Lazhar B et al (2017) Hydrogeochemistry and geothermometry of thermal springs from the Guelma region Algeria. J Geol Soc India 90:226–232. https://doi.org/10.1007/s12594-017-0703-y

    Article  Google Scholar 

  • Gonfiantini, R, Dinçer T (1975) Environmental isotope hydrology in the Hodna region, Algeria. Rapport FAO. IAEA- SM—182/14

  • Gonfitini R Dincer T (1974) Environmental Isotope Hydrology in the Hodna Region, Algeria; symposium on isotope techniques in groundwater hydrology; Vienna (Austria); 11–15 Mar 1974; IAEA-SM--182/14

  • Groupement BCEOM—BG—SOGREAH (2004) Etude d’Actualisation et de Finalisation du Plan National de l’Eau, Régions Hydrographiques Centre et Est, rapport de mission 2:179

  • Guendouz A (1985) Contribution à l’étude géochimique et isotopique des nappes profondes du Sahara Nord-Est septentrional Algérie; Thèse de 3é cycle. Univ Paris Sud, Centre Orsay, Paris, p 243

    Google Scholar 

  • Guendouz A, Moula AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic évolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–495

    Article  Google Scholar 

  • Guiraud R (1990) Evolution post- triasique de l’avant pays de la chaîne alpine en Algérie. D’après l’étude du Bassin du Hodna et des régions voisines. Mémoires N°3, Publications de l’Office National de Géologie, Algérie, p. 245

  • Hamel A (2009) Hydrogéologie des systèmes aquifères en pays montagneux à climat semi-aride. Cas de la vallée d'Oued El Abiod (Aurès). p.180

  • Haouchine A, Boudoukha A, Haouchine FZ, Nedjai R (2010) Cartographie de la Recharge Potentielle des Aquiferes en Zone Aride Cas de la Plaine d’El Outaya, Biskra—Algerie. Eur J Sci Res 45(4):1–13

    Google Scholar 

  • Laffite R (1939) Etude géologique de l’Aurès. Thèse, Université de Paris, Bull Serv Carte géologique Algérie, Alger, 2ème edition. p. 484

  • Larbes A (2005) Etude sur modèle mathématique du système aquifère de la région de Biskra. (ANRH). Colloque International sur les Ressources en Eau Souterraine dans le Sahara—CIRESS, 12–13, 2005, Ouargla, Algérie

  • Lauber U, Goldscheider N (2014) Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany). Hydrogeol J 22:1807–1824

    Article  Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge, vol 8. International Association Hydrogeology, UNESCO, Hannover, p 345

    Google Scholar 

  • Madl-Szőnyi J, Toth A (2015) Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region. Hydrogeol J 23:1359–1380

    Article  Google Scholar 

  • Mailloux BJ, Person M, Kelley S, Dunbar N, Cater S (1999) Tectonic controls on the hydrogeology of the Rio Grande Rift, New Mexico. Water Resour Res 35:2641–2659

    Article  Google Scholar 

  • Margat J (1972) Terminologie hydrogéologique. Proposition pour un dictionnaire. Rapport BRGM 72 SGN 203 AME

  • Melchiorre EB, Criss RE (1999) Relationship between seismicity and subsurface fluids, central Coast Ranges California. J Geophys Res 104(B1):921–939

    Article  Google Scholar 

  • Messekher I, Chabour N, Menani R (2012) Remontée de la nappe phréatique du Souf Conséquences et solutions envisagées. Analele Universităţii Bucureşti, Bucharest, pp 179–197

    Google Scholar 

  • Moulla AS, Guendouz A (2003) Etude des ressources en eau souterraines en zones arides (Sahara algérien) par les méthodes isotopiques. Hydrology of the Mediterranean and semi-arid regions (proceeding of an international symposium held at Montpellier, avril 2003). IAHS publ. no 273, 2003

  • Nesson C (1975) L’évolution des ressources hydrauliques dans les oasis du Bas-Sahara algérien; Recherches sur l’Algérie. Mémoires et documents. Service de doc. et de cartographie géographique. CNRS Nouvelle série V17:7–99

    Google Scholar 

  • Observatoire du Sahara et du Sahel (OSS), 2003.Système Aquifère du Sahara Septentrional, gestion commune d’un bassin transfrontière. Rapport, Edition Observatoire du Sahara et du Sahel (OSS), 48p

  • Pavlovskiy I, Selle B (2015) Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system. Groundwater 53:156–165

    Article  Google Scholar 

  • Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301(1):1–15

    Article  Google Scholar 

  • Rojstaczer S, Wolf S, Michel R (1995) Permeability enhancement in the shallow crust as a cause of earthquakeinduced hydrological changes. Nature 373:237–239

    Article  Google Scholar 

  • Rushton KR, Asaduz Zaman M, Hasan M (2020) Monitoring groundwater heads and estimating recharge in multi-aquifer systems illustrated by an irrigated area in north-west Bangladesh. Sustain Water Resour Manag 6:22. https://doi.org/10.1007/s40899-020-00382-y

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  Google Scholar 

  • Shan J, Wang J, Shan F et al (2020) Origin and circulation of saline springs in the Kuqa Basin of the Tarim Basin Northwest China. J Arid Land 12:331–348. https://doi.org/10.1007/s40333-020-0067-9

    Article  Google Scholar 

  • Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, process, and manifestation. Hydrogeol J 7:1–14

    Article  Google Scholar 

  • Trudgill ST, Laidlaw IMS, Smart PL (1980) Soil water residence times and solute uptake on a dolomite bedrock—preliminary results. Earth Surf Process 5(1):91–100. https://doi.org/10.1002/esp.3760050110

    Article  Google Scholar 

  • UNESCO (1983) Actualisation de l’étude des ressources en eau du Sahara septentrional. Rapport final. p 490

  • Walter J, Chesnaux R, Cloutier V, Gaboury D (2017) The influence of water/rock—water/clay interactions and mixing in the salinization processes of groundwater. J Hydrol Reg Stud 13:168–188. https://doi.org/10.1016/j.ejrh.2017.07.004

    Article  Google Scholar 

  • Wirmvem MJ, Kamtchueng BT, Wotany ER et al (2020) Multi-tracer (δ18O, δD, 3H, CFCs and SF6) investigation of groundwater recharge and apparent age at the Bamenda Highlands along the Cameroon volcanic line. Sustain Water Resour Manag 6:2. https://doi.org/10.1007/s40899-020-00357-z

    Article  Google Scholar 

  • Wood WW, Sanford W (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional semi-arid environment. Ground Water 33:458–468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foued Bouaicha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabour, N., Dib, H., Bouaicha, F. et al. A conceptual framework of groundwater flowpath and recharge in Ziban aquifer: south of Algeria. Sustain. Water Resour. Manag. 7, 2 (2021). https://doi.org/10.1007/s40899-020-00483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-020-00483-8

Keywords

Navigation