Skip to main content
Log in

Satellite-derived GRACE groundwater storage variation in complex aquifer system in India

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Satellite-based Gravity Recovery and Climate Experiment (GRACE) provides a quantity of available terrestrial water storage and combining the soil moisture from Global Land Data Assimilation System (GLDAS) offering estimation of groundwater storage changes for a region. We applied satellite-driven GRACE–GLDAS data in Weinganga–Wardha and Mahanadi basin to analyze the variation of groundwater storage variation and emphasising the concernment of complex aquifer system to improve the groundwater monitoring. Groundwater-level trends were analyzed for spatial and temporal variation of various aquifer systems. In situ groundwater-level observation and GRACE and its area application comprise selecting pixel. Six pixels from combine GRACE–GLDAS outputs were selected with various aquifer systems, where each pixel contains 10–50 monitoring wells. Groundwater storage anomaly derived using monthly GRACE Release 05 version of the Global Land Data Assimilation System (GLDAS) product for each pixel from 2002 to 2016. Correlation analysis was performed between GWSA (actual) and GWSA (grace) using linear regression. Correlation results show that the simple aquifer was good agreement during premonsoon and during postmonsoon; although the performance was poorer with complex aquifers system. It was found that groundwater storage has been decreasing for many years. This study highlights the significance of integrating GRACE sensitivity in the assessment of groundwater storage change in various aquifer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alley WM (2001) Ground water and climate. Ground Water 39(2):161

    Article  Google Scholar 

  • Bhanja SN, Mukherjee A (2019) In situ and satellite-based estimates of usable groundwater storage across India: implications for drinking water supply and food security. Adv Water Resour 126:15–23

    Article  Google Scholar 

  • Bhanja SN, Mukherjee A, Saha D, Velicogna I, Famiglietti JS (2016) Validation of GRACE based groundwater storage anomaly using in situ groundwater level measurements in India. J Hydrol 543:729–738

    Article  Google Scholar 

  • Central Water Commission (1997) India River Basin Atlas. New Delhi. http://www.india-wris.nrsc.gov.in/. Accessed 20 Mar 2018

  • CGWB (2012) Aquifer systems of India. Central Ground Water Board. MoWR, RD&GR, Govt. of India. http://cgwb.gov.in/AQM/India.pdf Accessed 20 Mar 2018

  • Chandan KS, Yashwant BK (2017) Optimization of groundwater level monitoring network using GIS-based geostatistical method and multi-parameter analysis: a case study in Wainganga Sub-basin, India. Chin Geogra Sci 27(2):201–215

    Article  Google Scholar 

  • Chen J, Li J, Zhang Z, Ni S (2014) Long-term groundwater variations in Northwest India from satellite gravity measurements. Glob Planet Change 116:130–138

    Article  Google Scholar 

  • Chen J, Famigliett JS, Scanlon BR, Rodell M (2016) Groundwater storage changes: present status from GRACE observations. In: Remote sensing and water resources, Springer, Cham, pp 207–227

  • Chen H, Zhang W, Nie N, Guo Y (2019) Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in situ observations. Sci Total Environ 649:372–387

    Article  Google Scholar 

  • Fang H, Beaudoing HK, Teng WL, Vollmer BE (2009) Global Land data assimilation system (GLDAS) products, services and application from NASA hydrology data and information services center (HDISC)

  • Feng W, Zhong M, Lemoine JM, Biancale R, Hsu HT, Xia J (2013) Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour Res 49(4):2110–2118

    Article  Google Scholar 

  • Fishman R (2018) Groundwater depletion limits the scope for adaptation to increased rainfall variability in India. Clim Change 147(1-2):195–209

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, p 604

    Google Scholar 

  • Güntner A, Schmidt R, Döll P (2007) Supporting large-scale hydrogeological monitoring and modelling by time-variable gravity data. Hydrogeol J 15:167–170

    Article  Google Scholar 

  • Han S-C, Shum CK, Jekeli C, Kuo C-Y, Wilson C, Seo K-W (2005) Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int 163:18–25

    Article  Google Scholar 

  • Hoffmann J, Sander P (2007) Remote sensing and GIS in hydrogeology. Hydrogeol J 15(1):1–3

    Article  Google Scholar 

  • Huang J, Pavlic G, Rivera A, Palombi D, Smerdon B (2016) Mapping groundwater storage variations with GRACE: a case study in Alberta, Canada. Hydrogeol J 24(7):1663–1680

    Article  Google Scholar 

  • Jalota S, Vashisht B, Sharma S, Kaur S (2018) Climate change and groundwater. Academic Press, Cambridge, pp 149–181

    Google Scholar 

  • Katpatal YB, Rishma C, Singh CK (2018) Sensitivity of the Gravity Recovery and Climate Experiment (GRACE) to the complexity of aquifer systems for monitoring of groundwater. Hydrogeol J 26(3):933–943

    Article  Google Scholar 

  • Kendall M (1975) Multivariate analysis. Charles Griffin & Company Ltd., London, p 210

    Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13(1):317–320

    Article  Google Scholar 

  • Kulkarni H, Vijay Shankar PS, Krishnan S (2009) Synopsis of groundwater resources in India: status, challenges and a new framework for responses. Report submitted to the Planning Commission. ACWADAM Report ACWA/PC/Rep-1, Government of India, p 97

  • Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48(4):4531

    Article  Google Scholar 

  • Long D, Chen X, Scanlon BR, Wada Y, Hong Y, Singh VP et al (2016) Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Sci Rep 6:24398

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econom J Econom Soc 13:245–259

    Google Scholar 

  • Munagapati H, Yadav R, Tiwari VM (2018) Identifying water storage variation in Krishna Basin, India from in situ and satellite based hydrological data. J Geol Soc India 92(5):607–615

    Article  Google Scholar 

  • Papa F, Frappart F, Malbeteau Y, Shamsudduha M, Vuruputur V, Sekhar M, Ramillien G, Prigent C, Aires F, Pandey RK, Bala S (2015) Satellite-derived surface and sub-surface water storage in the Ganges–Brahmaputra River Basin. J Hydrol Reg Stud 4:15–35

    Article  Google Scholar 

  • Patil S, Kulkarni H, Bhave N (2017) Groundwater in the Mahanadi River Basin. https://doi.org/10.13140/rg.2.2.11561.95846

  • Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 263(1–4):245–256

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteor Soc 85:381–394

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti J, Nigro J, Wilson C (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1003

    Article  Google Scholar 

  • Rui H, Beaudoing H, Teng W, Vollmer B, Rodell M, Lei GD (2012) New and Improved GLDAS data sets and data services at NASA GES DISC

  • Saha D, Ray RK (2019) Groundwater resources of India: potential, challenges and management. In: Groundwater development and management, Springer, Cham, pp 19–42

  • Sasgen I, van den Broeke M, Bamber JL, Rignot E, Sørensen LS, Wouters B, Martinec Z, Velicogna I, Simonsen SB (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet Sci Lett 333:293–303

    Article  Google Scholar 

  • Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4-5):319–334

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161

    Article  Google Scholar 

  • Seoane L, Ramillien G, Frappart Frédéric, Leblanc M (2013) Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-17-4925-2013

    Article  Google Scholar 

  • Shah T, Molden D, Sakthivadivel R, Seckler D (2001) Global groundwater situation: opportunities and challenges. Econ Polit Wkly 36:4142–4150

    Google Scholar 

  • Suhag R (2019) Overview of ground water in India. PRS, New Delhi

    Google Scholar 

  • Swenson S (2012) GRACE monthly land water mass grids NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, CA, USA. Dataset http://dx.doi.org/10.5067/TELND-NC005 Accessed on 15 Feb 2019

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett. https://doi.org/10.1029/2005GL025285

    Article  Google Scholar 

  • Swenson S, Yeh PJF, Wahr J, Famiglietti J (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett. https://doi.org/10.1029/2006gl026962

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res. https://doi.org/10.1029/2006WR005779

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth System. Science 305:503–505

    Article  Google Scholar 

  • Taylor R, Scanlon B, Doell P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green T, Chen J, Taniguchi M, Bierkens MFP, Macdonald A, Fan Y, Maxwell R, Yechieli Y, Treidel H (2013) Ground water and climate change. Nat Clim Change 3:322–329. https://doi.org/10.1038/nclimate1744

    Article  Google Scholar 

  • Tian S, Tregoning P, Renzullo LJ, van Dijk AI, Walker JP, Pauwels VR, Allgeyer S (2017) Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resour Res 53(3):1820–1840

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31(11):20–23. https://doi.org/10.1029/2004GL019779

    Article  Google Scholar 

  • Wouters B, Bonin JA, Chambers DP, Riva REM, Sasgen I, Wahr J (2014) GRACE time-varying gravity Earth system dynamics and climate change. Rep Prog Phys. https://doi.org/10.1088/0034-4885/77/11/116801

    Article  Google Scholar 

  • WRIS (2016) Water Resources Information System http://www.indiawris.nrsc.gov.in/wrpinfo/index.php?title=Main_Page. Accessed 20 Mar 2018

  • Xiao R, He X, Zhang Y, Ferreira V, Chang L (2015) Monitoring groundwater variations from satellite gravimetry and hydrological models: a comparison with in situ measurements in the Mid-Atlantic region of the United States. Remote Sens 7(1):686–703

    Article  Google Scholar 

  • Yeh PJF, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res. https://doi.org/10.1029/2006WR005374

    Article  Google Scholar 

  • Yirdaw SZ, Snelgrove KR (2011) Regional groundwater storage from GRACE over the Assiniboine Delta aquifer (ADA) of Manitoba. Atmos Ocean 49(4):396–407

    Article  Google Scholar 

  • Zeng N, Yoon JH, Mariotti A, Swenson S (2008) Variability of basin-scale terrestrial water storage from a PER water budget method: the Amazon and the Mississippi. J Clim 21(2):248–265

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to NITT/MHRD for financial support extended to the Ph.D. scholar (LS). This research was also possible with the use of publicly available datasets, including the in situ groundwater data of India from the WRIS: http://indiawris.gov.in/wris, GRACE data from http://grace.jpl.nasa.gov, and GLDAS data abstracted from https://ldas.gsfc.nasa.gov/gldas/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbarayan Saravanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Saravanan, S. Satellite-derived GRACE groundwater storage variation in complex aquifer system in India. Sustain. Water Resour. Manag. 6, 43 (2020). https://doi.org/10.1007/s40899-020-00399-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-020-00399-3

Keywords

Navigation