Skip to main content
Log in

Scale mismatch in social–ecological systems: a Costa Rican case study of spring water management

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

In the management of natural resources, scale mismatch occurs when resources are not managed at the spatial or temporal scale at which they are provisioned. Issues of scale mismatch abound in social–ecological systems and can hinder efforts to effectively manage resources, threaten the resilience of the larger ecosystem, and affect societal well-being and livelihoods. Here, we provide a brief overview of the scale mismatch literature and discuss potential opportunities to address scale mismatches in drinking water management. We present a case study of spring water management in rural communities in the Cartago province of Costa Rica, where community groups face issues of both spatial and temporal mismatch in providing drinking water to their users. Through this case study, we observed that issues of scale mismatch are often overlooked because of a lack of understanding of the scale at which resources are sustained. We argue that highlighting examples of scale mismatch will help others to identify and understand their own systems and be better prepared to reconfigure operations to govern and manage social–ecological systems. Given the dynamic, adaptive nature of social–ecological systems, scale dependencies can change in a system. Thus, we recommend periodic scale mismatch analysis in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal A, delos Angeles MS, Bhatia R, Chéret I, Davila-Poblete S, Falkenmark M, Gonzalez Villarreal F, Jønch-Clausen T, Aït Kadi M, Kindler J, Rees J, Roberts P, Rogers P, Solanes M, Wright A (2000) Integrated water resources management. Technical advisory committee background paper 4. Global Water Partnership, Stockholm

    Google Scholar 

  • Ahlborg H, Nightingale AJ (2012) Mismatch between scales of knowledge in Nepalese forestry: epistemology, power, and policy implications. Ecol Soc 17(4):16. https://doi.org/10.5751/ES-05171-170416

    Google Scholar 

  • American Water Works Association (2003) Principles and practices of water supply operations: water quality. 3rd edn

  • Apostolopoulou E, Paloniemi R (2012) Frames of scale challenges in Finnish and Greek biodiversity conservation. Ecol Soc 17(4):9. https://doi.org/10.5751/ES-05181-170409

    Google Scholar 

  • Armitage D, Plummer R (2010) Adapting and transforming: governance for navigating change. In: Armitage D, Plummer R (eds) Adaptive capacity and environmental governance. Springer, Heidelberg, pp 287–302

    Chapter  Google Scholar 

  • Beever EA, Simberloff D, Crowley SL, Al-Chokhachy R, Jackson HA, Petersen SL (2019) Social-ecological mismatches create conservation challenges in introduced species management. Front Ecol Environ 17(2):117–125. https://doi.org/10.1002/fee.2000

    Google Scholar 

  • Biswas AK (2004) Integrated water resources management: a reassessment. Water Int 29(2):248–256

    Article  Google Scholar 

  • Bodin Ö, Crona B, Thyresson M, Golz A, Tengo M (2014) Conservation success as a function of good alignment of social and ecological structures and processes. Conserv Biol 28(5):1371–1379. https://doi.org/10.1111/cobi.12306

    Google Scholar 

  • Bodin Ö, Alexander SM, Baggio J, Barnes ML, Berardo R, Cumming GS, Dee L, Fischer AP, Fischer M, Mancilla-Garcia M, Guerrero A, Hileman J, Ingold K, Matous P, Morrison TH, Nohrstedt D, Pittman J, Robins G, Sayles J (2019) Improving network approaches to the study of complex social-ecological interdependencies. Nat Sustain 2(7):551–559. https://doi.org/10.1038/s41893-019-0308-0

    Google Scholar 

  • Bosque-Perez N, Klos PZ, Force JE, Waits LP, Cleary K, Rhoades P, Galbraith SM, Bentley Brymer AL, O’Rourke M, Eigenbrode SD, Finegan B, Wulfhorst JD, Sibelet N, Holbrook JD (2016) A pedagogical model for team-based, problem-focused interdisciplinary doctoral education. Bioscience 66(6):477–488. https://doi.org/10.1093/biosci/biw042

    Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosyst Environ 104(1):185–228. https://doi.org/10.1016/j.agee.2004.01.015

    Google Scholar 

  • Carmona-Torres C, Parra-López C, Groot JCJ, Rossing WAH (2011) Collective action for multi-scale environmental management: achieving landscape policy objectives through cooperation of local resource managers. Landsc Urban Plan 103(1):24–33. https://doi.org/10.1016/j.landurbplan.2011.05.009

    Google Scholar 

  • Cash DW, Adger WN, Berkes F, Garden P, Lebel L, Olsson P, Pritchard L, Young O (2006) Scale and cross-scale dynamics: governance and information in a multilevel world. Ecol Soc 11(2):8

    Article  Google Scholar 

  • Catano N, Marchand M, Staley S, Wang Y (2009) Development and validation of the watershed sustainability index (WSI) for the watershed of the Reventazón river. COMCURE, the Commission for the Preservation and Management of the Watershed of the Reventazón River, Costa Rica

  • Charmaz K (2006) Constructed grounded theory: a practical guide through qualitative analysis. Sage, London

    Google Scholar 

  • Cleveland C, Constanza R, Eggertsson T, Fortmann L, Low B, McKean M, Ostrom E, Wilson J, and Young OR (1996) A framework for modeling the linkages between ecosystems and human systems. Beijer discussion paper series no. 76. Beijer International Institute of Ecological Economics, Stockholm, Sweden

  • Cohen A, Davidson S (2011) The watershed approach: challenges, antecedents, and the transition from technical tool to governance unit. Water Altern 4(1):1–14

    Google Scholar 

  • Cosens B, Stow C (2014) Resilience and water governance: addressing fragmentation and uncertainty in water allocation and water quality law. In: Garmestani AS, Allen CR (eds) Social-ecological resilience and law. Columbia University Press, New York

    Google Scholar 

  • Cosens BA, Craig RK, Hirsch S, Arnold CT, Benson MH, DeCaro DS, Garmestani AS, Gosnell H, Ruhl J, Schlager E (2017) The role of law in adaptive governance. Ecol Soc 22(1):30. https://doi.org/10.5751/ES-08731-220130

    Google Scholar 

  • Costa Rica Government (1942) Ley de Aguas No. 276 (Water law 276). Costa Rica: La Gaceta No. 190

  • Costa Rica Government (1995) Ley Orgánica del Ambiente 7554 (Environmental law 7554). Costa Rica: La Gaceta No 188

  • Costa Rica Government (2005) Reglamento Para la Calidad del Agua Potable Decreto Ejecutivo No. 32327-S (Regulation for drinking water quality executive decree no. 32327-S). Costa Rica: La Gaceta No. 84

  • Creswell JW (2003) Research design: qualitative, quantitative, and mixed methods approaches. Sage Publications, Thousand Oaks

    Google Scholar 

  • Cumming GS, Cumming DHM, Redman CL (2006) Scale mismatches in social-ecological systems: causes, consequences, and solutions. Ecol Soc 11(1):14

    Article  Google Scholar 

  • Cumming GS, Olsson P, Chapin FS, Holling CS (2013) Resilience, experimentation, and scale mismatches in social-ecological landscapes. Landsc Ecol 28:1139–1150. https://doi.org/10.1007/s10980-012-9725-4

    Google Scholar 

  • del Vásquez Castillo N (2008) Plan de Ordenamiento Territorial Participativo para la Gestión de Zonas Potenciales de Recarga Hídrica en la Microregión Hidrográfica Balalaica, Turrialba, Costa Rica. MS thesis, CATIE. Turrialba, Costa Rica

  • Dore J, Lebel L (2010) Deliberation and scale in Mekong region water governance. J Environ Manag 46:60–80. https://doi.org/10.1007/s00267-010-9527-x

    Google Scholar 

  • Eigenbrode SD, O’Rourke M, Wulfhorst JD, Althoff DM, Goldberg CS, Merrill K, Morse W, Nielsen-Pincus M, Stephens J, Winowiecki L, Bosque-Pérez NA (2007) Employing philosophical dialogue in collaborative science. BioScience 57(1):55–64. https://doi.org/10.1641/B570109

    Google Scholar 

  • Ekstrom JA, Young OR (2009) Evaluating functional fit between a set of institutions and an ecosystem. Ecol Soc 14(2):16

    Article  Google Scholar 

  • Fremier A, DeClerck F, Bosque-Perez N, Estrada Carmona N, Hill R, Joyal T, Keesecker L, Klos PZ, Martinez-Salinas A, Niemeyer R, Sanfiorenzo A, Welsh K, Wulfhorst JD (2013) Understanding spatial-temporal lags in ecosystem service provisioning to improve incentive mechanisms and guide governance: examples from Mesoamerica and river-riparian systems. BioScience 63(6):472–482. https://doi.org/10.1525/bio.2013.63.6.9

    Google Scholar 

  • Gibson C, Ostrom E, Ahn T (2000) The concept of scale and the human dimensions of global change: a survey. Ecol Econ 32:217–239

    Article  Google Scholar 

  • González Cueva M (2011) Análisis de la Normativa, Criterios y Escenarios para la Determinación del Ancho de Franjas Ribereñas como Áreas de Protección en Costa Rica. MS thesis, CATIE. Turrialba, Costa Rica

  • Graham J, Amos B, Plumptre T (2003) Principles for good governance in the 21st Century. Policy brief no. 15. Institute on Governance, Ottawa, Canada

  • Guerrero AM, McAllister RRJ, Concoran J, Wilson KA (2013) Scale mismatches, conservation planning, and the value of social-network analyses. Conserv Biol 27(1):35–44. https://doi.org/10.1111/j.1523-1739.2012.01964.x

    Google Scholar 

  • Gunderson LH, Holling CS (eds) (2002) Panarchy: understanding transformations in human and natural systems. Island Press, Washington

    Google Scholar 

  • Hessl AE (2002) Aspen, elk, and fire: the effects of human institutions on ecosystem processes. BioScience 52(11):1011–1022. https://doi.org/10.1641/0006-3568(2002)052%5b1011:AEAFTE%5d2.0.CO;2

    Google Scholar 

  • Holling CS (1986) The resilience of terrestrial ecosystems: local surprise and global change. In: Clark WC, Munn RE (eds) Sustainable development of the biosphere. International Institute for Applied Systems Analysis, Cambridge, pp 292–316

    Google Scholar 

  • Johnson TR, Wilson JA, Cleaver C, Vadas RL (2012) Social-ecological scale mismatches and the collapse of the sea urchin fishery in Maine, USA. Ecol Soc 17(2):15. https://doi.org/10.5751/ES-04767-170215

    Google Scholar 

  • Kane SC (2012) Water security in Buenos Aires and the Paraná-Paraguay waterway. Hum Organ 71(2):211–221

    Article  Google Scholar 

  • Knuppe K, Pahl-Wostl C (2011) A framework for the analysis of governance structures applying to groundwater resources and the requirements for the sustainable management of associated ecosystem services. Water Resour Manag 25:3387–3411. https://doi.org/10.1007/s11269-011-9861-7

    Google Scholar 

  • Kok K, Veldkamp T (2011) Scale and governance: conceptual considerations and practical implications. Ecol Soc 16(2):23

    Article  Google Scholar 

  • Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P, Moll P, Swilling M, Thomas CJ (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain Sci 7:25–43. https://doi.org/10.1007/s11625-011-0149-x

    Google Scholar 

  • Lee KN (1993) Greed, scale mismatch, and learning. Ecol Appl 3(4):560–564

    Google Scholar 

  • Lofland J, Snow D, Anderson L, Lofland LH (2006) Analyzing social settings: a guide to qualitative observations and analysis. Wadsworth, Belmont

    Google Scholar 

  • Ludwig JA, Smith MDS (2005) Interpreting and correcting cross-scale mismatches in resilience analysis: a procedure and examples from Australia’s rangelands. Ecol Soc 10(2):20

    Article  Google Scholar 

  • Maciejewski K, De Vos A, Cumming GS, Moore C, Biggs D (2015) Cross-scale feedbacks and scale mismatches as influences on cultural services and the resilience of protected areas. Ecol Appl 25(1):11–23. https://doi.org/10.1890/13-2240.1.sm

    Google Scholar 

  • Madrigal-Ballestero R, Alipízar F, Schlüter A (2013) Public perceptions of the performance of community-based drinking water organizations in Costa Rica. Water Resour Rural Dev 1(2):43–56. https://doi.org/10.1016/j.wrr.2013.10.001

    Google Scholar 

  • Marchena G (2009) Comision de Ordenamiento y Manejo de la Cuenca Alta del Río Reventazón. COMCURE, Cartargo

    Google Scholar 

  • Mena-Rivera L, Quirós-Vega J (2018) Assessment of drinking water suitability in low income rural areas: a case study in Sixaola, Costa Rica. J Water Health 16(3):403–413. https://doi.org/10.2166/wh.2018.203

    Google Scholar 

  • Menga F (2016) Domestic and international dimensions of transboundary water politics. Water Altern 9(3):704–723

    Google Scholar 

  • Mollinga PP (2008) Water, politics and development: framing a political sociology of water resources management. Water Altern 1(1):7–23

    Google Scholar 

  • Morse WC, Nielsen-Pincus M, Force J, Wulfhorst J (2007) Bridges and barriers to developing and conducting interdisciplinary graduate-student team research. Ecol Soc 12(2):8

    Article  Google Scholar 

  • Moss T, Newig J (2010) Multilevel water governance and problems of scale: setting the stage for a broader debate. Environ Manag 46(1):1–6. https://doi.org/10.1007/s00267-010-9531-1

    Google Scholar 

  • National Water Laboratory (2019) Agua para consumo humano por provincias y saneamiento por regiones manejados en forma segura en zonas urbanas y rurales de Costa Rica al 2018. National Institute of Water and Sewage, La Unión, Cartago, Costa Rica

    Google Scholar 

  • Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325:419–422. https://doi.org/10.1126/science.1172133

    Google Scholar 

  • Paloniemi R, Apostolopoulou E, Primmer E, Grodzinska-Jurcak M, Henle K, Ring I, Simila J (2012) Biodiversity conservation across scales: lessons from a science–policy dialogue. Nat Conserv 2:7–19. https://doi.org/10.3897/natureconservation.2.3144

    Google Scholar 

  • Parkes MW, Morrison KE, Bunch MJ, Hallstrom LK, Neudoerffer RC, Venema HD, Waltner-Toews D (2010) Towards integrated governance for water, health and social-ecological systems: the watershed governance prism. Glob Environ Change 20(4):693–704. https://doi.org/10.1016/j.gloenvcha.2010.06.001

    Google Scholar 

  • Pelosi C, Goulard BG (2010) The spatial scale mismatch between ecological processes and agricultural management: do difficulties come from underlying theoretical frameworks? Agric Ecosyst Environ 139:455–462. https://doi.org/10.1016/j.agee.2010.09.004

    Google Scholar 

  • Poff NL, Allan JD, Palmer MA, Hart DD, Richter BD, Arthington AH, Rogers KH, Meyers JL, Stanford JA (2003) River flows and water wars: emerging science for environmental decision making. Front Ecol Environ 1(6):298–306. https://doi.org/10.1890/1540-9295(2003)001%5b0298:RFAWWE%5d2.0.CO;2

    Google Scholar 

  • Räsänen A, Juhola S, Monge Monge A, Käkönen M, Kanninen M, Nygren A (2017) Identifying mismatches between institutional perceptions of water-related risk drivers and water management strategies in three river basin areas. J Hydrol 550:704–715. https://doi.org/10.1016/j.jhydrol.2017.05.040

    Google Scholar 

  • Redman CL, Grove JM, Kuby LH (2004) Integrating social science into the long-term ecological research (LTER) network: social dimensions of ecological change and ecological dimensions of social change. Ecosystems 7(2):161–171. https://doi.org/10.1007/s10021-003-0215-z

    Google Scholar 

  • Richards D, Smith MJ (2002) Governance and public policy in the United Kingdom. Oxford University Press, Oxford

    Google Scholar 

  • Sayles JS, Baggio JA (2017) Social–ecological network analysis of scale mismatches in estuary watershed restoration. Proc Natl Acad Sci USA 114(10):E1776–E1785. https://doi.org/10.1073/pnas.1604405114

    Google Scholar 

  • Scarlett L, McKinney M (2016) Connecting people and places: the emerging role of network governance in large landscape conservation. Front Ecol Environ 14(3):116–125. https://doi.org/10.1002/fee.1247

    Google Scholar 

  • Schultz CA, Timberlake TA, Wurtzebach Z, McIntyre KB, Moseley C, Huber-Stearns HR (2019) Policy tools to address scale mismatches: insights from U.S. forest governance. Ecol Soc 24(1):21. https://doi.org/10.5751/ES-10703-240121

    Google Scholar 

  • Silver JJ (2008) Weighing in on scale: synthesizing disciplinary approaches to scale in the context of building interdisciplinary resource management. Soc Nat Resour 21:921–929. https://doi.org/10.1080/08941920701617809

    Google Scholar 

  • Termeer C, Dewulf A, Van Lieshout M (2010) Disentangling scale approaches in governance research: comparing monocentric, multilevel, and adaptive governance. Ecol Soc 15(4):29

    Article  Google Scholar 

  • Vatn A, Vedeld P (2012) Fit, interplay, and scale: a diagnosis. Ecol Soc 17(4):12. https://doi.org/10.5751/ES-05022-170412

    Google Scholar 

  • Vervoort JM, Rutting L, Kok K, Hermans FLP, Veldkamp T, Bregt AK, van Lammeren R (2012) Exploring dimensions, scales, and cross-scale dynamics from the perspectives of change agents in social-ecological systems. Ecol Soc 17(4):24. https://doi.org/10.5751/ES-05098-170424

    Google Scholar 

  • Walker B, Carpenter S, Anderies J, Abel N, Cumming GS, Janssen M, Lebel L, Norberg J, Peterson GD, Pritchard R (2002) Resilience management in social-ecological systems: a working hypothesis for a participatory approach. Conser Ecol 6(1):14

    Google Scholar 

  • Wilson J (2006) Matching social and ecological systems in complex ocean fisheries. Ecol Soc 11(1):9

    Article  Google Scholar 

  • Young OR (2002) The institutional dimensions of environmental change: fit, interplay and scale. MIT Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

This work was funded by a National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) (Grant No. 0903479). This paper is part of the interdisciplinary dissertation chapter jointly written by KW, LK, RH, and TJ at the University of Idaho and Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). This work was supported by additional funding awarded to RH by the Student Grant Program at the University of Idaho and to LK by a NSF Graduate Research Fellowship. The authors sincerely appreciate the support and collaboration of ASADA and CAAR representatives from the Tuis and Pejibaye River basins in Costa Rica. The authors thank JD Wulfhorst for his contributions to methodological development and review of the manuscript, Nicole Sibelet and Isabel Gutiérrez for providing comments on the manuscript, and Amilkar Moncada for his assistance with fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen Welsh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welsh, K., Keesecker, L., Hill, R. et al. Scale mismatch in social–ecological systems: a Costa Rican case study of spring water management. Sustain. Water Resour. Manag. 6, 40 (2020). https://doi.org/10.1007/s40899-020-00398-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-020-00398-4

Keywords

Navigation