Skip to main content

Advertisement

Log in

Simultaneous biosorption and bioaccumulation: a novel technique for the efficient removal of arsenic

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Biofilm is communities of microorganisms attached to the surface and is capable to uptake and concentrate metal species within their cell structure. The purpose of this research was to produce Bacillus arsenicus MTCC 4380 biofilm on Sawdust/MnFe2O4 composite and estimate its capability for biosorption/bioaccumulation of As(III) and As(V) from wastewater. A laboratory-scale batch model was utilized for biosorption/bioaccumulation assay. The effect of pH, biosorbent dose, contact time, temperature and initial adsorbate concentration on the removal efficiency were studied. The minimum contact time to reach equilibrium is about 220 min at pH 7 at 30 °C temperature for both ions. FT–IR confirmed that there are some functional groups on the surface of biosorbent attached with biofilm that may interact with the metal ions. The pattern of biosorption/bioaccumulation fitted well with Khan isotherm model for As(III) and Brouers–Sotolongo and Fritz–Schlunder–V isotherm models for As(V). On the basis of \(\overline{{{\text{R}}^{{\text{2}}} }}\) values the highest fitted model order among one and two parameter models is Langmuir model with a maximum adsorption capacity of 2584.6679 mg/g for As(III) and 2651.6749 mg/g for As(V). The effect of co-existing ions for example Cu2+, Zn2+, Bi3+, Cd2+, Fe3+, Pb2+, Co2+, Ni2+, Cr6+ and SO4 2− at different concentrations were inspected. Desorption study exhibited that over 83.568% of As(III) and 89.081 of As(V) could be desorbed from composite with 0.05 M NaOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

AE :

The energy of adsorption (KJ/mol)

AFS :

Fritz–Schlunder–IV isotherm constant ((mg/g)(L/mg)αFS)

aFS :

Fritz–Schlunder–IV model exponent

aK :

Khan isotherm exponent

AKC :

Koble–Corrigan parameters ((mg/g)(L/mg)nKC)

bB :

Baudu isotherm constant (L/mg)

BFS :

Fritz–Schlunder–IV isotherm constant ((L/mg)βFS)

bFS :

Fritz–Schlunder–IV model exponent

bJ :

Jossens model exponent

bK :

Khan isotherm constant (L/mg)

BKC :

Koble–Corrigan parameters ((L/g)nKC)

bTE :

Temkin isotherm constant corresponding to heat of adsorption (J/mol)

C0 :

Initial concentration of arsenic in the solution (mg/L)

Ce :

Equilibrium concentration of arsenic in the solution (mg/L)

E:

Mean free energy (KJ/mol)

K1 :

Fritz–Schlunder–V equilibrium constant ((L/mg)αFS)

K2 :

Fritz–Schlunder–V equilibrium constant ((L/mg)βFS)

KBS :

Brouers–Sotolongo isotherm constant ((mg/g)(L/mg)1/α)

KF :

Freundlich isotherm constant ((mg/g)(L/mg)1/nF)

KDR :

Dubinin–Radushkevich isotherm constant or activity coefficient linked to mean adsorption energy (mol2/KJ2)

KFS :

Fritz–Schlunder –III isotherm constant ((L/mg)n FS)

KH :

Hill isotherm constant (L/g)

KHE :

Adsorption equilibrium constant known as Henry constant (L/g)

KHK :

Holl–Krich isotherm constant ((L/mg)nHK)

KL :

Langmuir isotherm constant signifying the affinity between the adsorbent and the adsorbate molecules relating the energy of adsorption (L/mg)

KLJF :

SsLangmuir–Freundlich–Jovanovic isotherm constant (L/mg)

KJ :

Jossens isotherm constant ((mg/g)(L/mg))

KJF :

Jovanovic–Freundlich isotherm constant depends only on the temperature (L/mg)

KJV :

Jovanovic isotherm constant linked to the free energy of adsorption (L/g)

KL :

Langmuir isotherm constant (L/mg)

KLF :

Langmuir–Freundlich isotherm constant (L/mg)

KLJ :

Langmuir–Jovanovic isotherm constant (L/mg)

Km :

Activated sludge model constant (L/g)

KMJ :

Marczewski–Jaroniec isotherm constant (L/mg)

KRP :

Redlich–Peterson isotherm constant (L/g)

KRPI :

Radke–Prausnitz I isotherm constant (L/mg)

KRPII :

Radke–Prausnitz II isotherm constant (L/mg)

KRPIII :

Radke–Prausnitz III isotherm constant (L/mg)

KS :

Sips isotherm constant related to affinity constant (mg/L)−1/m S

KT :

Toth isotherm constant linked to affinity constant (L/mg)

KTE :

Temkin isotherm constant corresponding to the maximum binding energy (L/mg)

KU :

Unilan isotherm constant ((L/mg)bHK)

KVS :

Vieth–Sladek isotherm constant (L/mg)

J:

Jossens isotherm constant ((L/mg)bJ)

M:

Mass of the adsorbent (dry) used (g)

mLF :

Langmuir–Freundlich model exponent or heterogeneity factor

mMJ :

Marczewski–Jaroniec model exponent

mRPI :

Radke–Prausnitz I model exponent

mRPII :

Radke–Prausnitz II model exponent

mRPIII :

Radke–Prausnitz III model exponent

ms :

Sips model exponent

n:

The number of observations in the experimental study

nF :

Freundlich model exponent

nFS :

Fritz–Schlunder–III model exponent

nH :

Hill cooperativity coefficient

nHK :

Holl–Krich model exponent

nJF :

Jovanovic–Freundlich model exponent

nLJ :

Langmuir–Jovanovic model exponent

nLJF :

Langmuir–Freundlich–Jovanovic model exponent

nKC :

Koble–Corrigan parameters

Nm :

Activated sludge model exponential constant

nMJ :

Marczewski–Jaroniec model exponent

nT :

Toth isotherm exponent, a measure of surface heterogeneity

p:

The number of parameters to be determined

qe :

Adsorption capacity or amount of arsenic adsorbed on the surface of adsorbent at equilibrium (mg/g)

qe,exp :

The equilibrium adsorption capacity observed from the batch experiment (mg/g)

qe,model :

The prediction from the isotherm model corresponding to Ce (mg/g)

qmB :

Maximum monolayer adsorption capacity predicted by Baudu isotherm (mg/g)

qmBS :

Maximum monolayer adsorption capacity forecasted by Brouers–Sotolongo isotherm (mg/g)

qmDR :

Maximum monolayer adsorption capacity predicted by Dubinin–Radushkevich isotherm (mg/g)

qmFS :

Maximum monolayer adsorption capacity forecasted by Fritz–Schlunder–III isotherm (mg/g)

qmFS5 :

Maximum monolayer adsorption capacity given by Fritz–Schlunder–V isotherm (mg/g)

qmH :

Maximum monolayer adsorption capacity predicted by Hill isotherm (mg/g)

qmHK :

Maximum monolayer adsorption capacity predicted by Holl–Krich isotherm (mg/g)

qmJF :

Maximum monolayer adsorption capacity predicted by Jovanovic–Freundlich isotherm (mg/g)

qmJV :

Maximum monolayer adsorption capacity predicted by Jovanovic isotherm (mg/g)

qmK :

Maximum monolayer adsorption capacity forecasted by Khan isotherm (mg/g)

qmL :

Maximum monolayer adsorption capacity predicted by Langmuir isotherm (mg/g)

qmLF :

Maximum monolayer adsorption capacity predicted by Langmuir–Freundlich isotherm (mg/g)

qmLFJ :

Maximum monolayer adsorption capacity predicted by Langmuir–Freundlich–Jovanovic isotherm (mg/g)

qmLJ :

Maximum monolayer adsorption capacity predicted by Langmuir–Jovanovic isotherm (mg/g)

qmMJ :

Maximum monolayer adsorption capacity forecasted by Marczewski–Jaroniec isotherm (mg/g)

qmL :

Maximum monolayer adsorption capacity predicted by Langmuir isotherm (mg/g)

qmRPI :

Maximum monolayer adsorption capacity forecasted by Radke–Prausnitz I isotherms (mg/g)

qmRPII :

Maximum monolayer adsorption capacity forecasted by Radke–Prausnitz II isotherms (mg/g)

qmRPIII :

Maximum monolayer adsorption capacity forecasted by Radke–Prausnitz III isotherms (mg/g)

qmS :

Maximum monolayer adsorption capacity predicted by Sips isotherm (mg/g)

qmT :

Maximum monolayer adsorption capacity forecasted by Toth isotherm (mg/g)

qmU :

Maximum monolayer adsorption capacity forecasted by Unilan isotherm (mg/g)

qmVS :

Maximum monolayer adsorption capacity predicted by Vieth–Sladek isotherm (mg/g)

R:

Universal gas constant (8.314 J/mol K)

Rd :

Distribution coefficient

Re :

Removal efficiency

RL :

Separation factor or adsorption intensity

s:

Unilan model exponent dependent on temperature describing the heterogeneity of the system

T:

Absolute temperature (K)

V:

Working volume of the solution (L)

x:

Baudu model exponent

y:

Baudu model exponent

α:

Brouers–Sotolongo model exponent

αFS :

Fritz–Schlunder–V model exponent

αRP :

Redlich–Peterson isotherm constant (L/mg)βRP

βFS :

Fritz–Schlunder–V model exponent

βRP :

Redlich–Peterson model exponent

βVS :

Vieth–Sladek equilibrium constant

ε:

Polanyi potential (mol2/KJ2)

References

  • Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M (2014) Isolation and characterization of arsenic resistant bacteria from wastewater, Braz. J Microbiol 45(4):1309–1315

    Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  Google Scholar 

  • Allievi MC, Sabbione F, Prado-Acosta M, Palomino MM, Ruzal SM, Sanchez-Rivas C (2011) Metal biosorption by surface layer protein from Bacillus species, J Microbiol Biotechnol 21 147–153

    Article  Google Scholar 

  • Antunes FAF, Santos JC, Chandel AK, Milessi TSS, Peres GFD, Silva da SS (2015) Hemicellulosic ethanol production by immobilized wild Brazilian yeast Scheffersomyces shehatae UFMG-HM 52.2: effects of cell concentration and stirring rate. Curr Microbiol 72:1–6

    Google Scholar 

  • Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe(III)–treated biomass of Staphylococcus xylosus. Chem Eng J 162:178–185

    Article  Google Scholar 

  • Awual MR, Hasan MM (2015) Colorimetric detection and removal of copper(II) ions from wastewater samples using tailor-made composite adsorbent, Sens Actuators B 206:692–700.

    Article  Google Scholar 

  • Awual MR, Jyo A, Ihara T, Seko N, Tamada M, Taek Lim K (2011) Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent. Water Res 45:4592–4600

    Article  Google Scholar 

  • Baig JA, Kazi TG, Shah AQ, Kandhro GA, Afridi HI, Khan S, Kolachi NF (2010) Biosorption studies on powder of stem of Acacia nilotica: removal of arsenic from surface water. J Hazard Mater 178:941–948

    Article  Google Scholar 

  • Balaji T, Yokoyama T, Matsunaga H (2005) Adsorption and removal of As(V) and As(III) using Zr–loaded lysine diacetic acid chelating resin. Chemosphere 59:1169–1174

    Article  Google Scholar 

  • Banwart SA (1997) Aqueous speciation at the interface between geological solids and groundwater. In: Grenthe I, Puigdomenech I (eds.), Modeling in aquatic chemistry, nuclear energy agency of the organization for economic cooperation and development, pp 245–287

  • Basha CA, Bhadrinarayana NS, Anantharaman N, Begum KMMS (2008a) Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. J Hazard Mater 152:71–78

    Article  Google Scholar 

  • Bianfang Z, Guide T, Zonglin Y, Zhenbiao W, Qingfen Y, Jianpo C (2007) Synthesis of magnetic manganese ferrite. J Wuhan Univ Technol Mater Sci Ed 22:514–517

    Article  Google Scholar 

  • Brady D, Duncan JR (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41(1):149–154

    Article  Google Scholar 

  • Chiban G, Carja G, Lehutu F, Sinan (2011) Equilibrium and thermodynamic studies for the removal of As(V) ions from aqueous solution using dried plants as adsorbents, Arabian J. Chemistry. doi:10.1016/j.arabjc.2011.10.002

    Google Scholar 

  • Comte S, Guibaud G, Baudu M (2008) Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J Hazard Mater 151:185–193

    Article  Google Scholar 

  • Dabrowski P, Podkosicielny Z, Hubicki M, Barczak (2005) Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58:1049–1070

    Article  Google Scholar 

  • Dash RR, Balomajumder C, Kumar A (2009) Removal of metal cyanides from aqueous solutions by suspended and immobilized cells of Rhizopus oryzae (MTCC 2541), Eng. Life Sci 9(1):53–59

    Article  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modelling. Wiley, New York

    Google Scholar 

  • European commission Directive (1998) 98/83/EC, related with drinking water quality intended for human consumption, Brussels, Belgium

  • François F, Lombard C, Guigner JM, Soreau P, Brian-Jaisson MG, Vandervennet M, Garcia D, Molinier AL, Pignol D, Peduzzi J, Zirah S, Rebuffat S (2012) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol 78:1097–1106

    Article  Google Scholar 

  • Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review. Rev Environ Sci Biotechnol 37:41–127

    Article  Google Scholar 

  • Giri AK, Patel RK, Mahapatra SS (2011) Artificial neural network (ANN) approach for modeling of arsenic(III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chem Eng J 178:15–25

    Article  Google Scholar 

  • Giri AK, Patel RK, Mahapatra SS, Mishra PC (2013) Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environ Sci Pollut Res 20:1281–1291

    Article  Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay Minerals. Soil Sci Soc Am J 66:413–421

    Article  Google Scholar 

  • Green-Ruiz C, Tirado VR, Gil BG (2008) Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresour Technol 99:3864–3870

    Article  Google Scholar 

  • Gupta CK, Mukherjee TK (1990) Hydrometallurgy in extraction processes, vol. II. CRC Press, Boca Raton, p 114

    Google Scholar 

  • Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic (V) with Lessonia nigrescens. Miner Eng 19:486–490

    Article  Google Scholar 

  • Hu IMC, Lo G (2005) Chen, fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 21:11173–11179

    Article  Google Scholar 

  • Kacar Y, Arpa C, Tan S, Denizli A, Genc O, Arica MY (2002) Biosorption of Hg (II) and Cd (II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochem 37:601–610

    Article  Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Biores Technol 70:95–104

    Article  Google Scholar 

  • Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour Technol 98:452–455

    Article  Google Scholar 

  • Kundu S, Gupta AK (2006) Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): evaluation of kinetic, equilibrium and thermodynamic models. Sep Purif Technol 51:165–172

    Article  Google Scholar 

  • Li L, Stanforth R (2000) Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH). J Colloid Interf Sci 230:12–21

    Article  Google Scholar 

  • Li Z, Deng S, Yu G, Huang J, Lima VC (2010) As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: behavior and mechanism. Chem Eng J 161:106–113

    Article  Google Scholar 

  • Lou JC, Lin YC (2008) Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. Environ Monit Assess 137:471–479

    Article  Google Scholar 

  • Maliyekkal SM, Philip L, Pradeep T (2009) As(III) removal from drinking water using manganese oxide-coated-alumina: performance evaluation and mechanistic details of surface binding. Chem Eng J 153:101–107

    Article  Google Scholar 

  • Mandal S, Padhi T, Patel RK (2011) Studies on the removal of arsenic (III) from water by a novel hybrid material. J Hazard Mater 192:899–908

    Article  Google Scholar 

  • Marsden J, House I (1992) The chemistry of gold extraction. Ellis Horwood, Chichester, p 508

    Google Scholar 

  • Mashitah MD, Zulfadhly Z, Bhatia S (1999) Binding mechanism of heavy metals biosorption by Pycnoporus sanguineus. J Artif Cells Blood Substit Immobil Biotechnol 27:441–445

    Article  Google Scholar 

  • Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122:161–170

    Article  Google Scholar 

  • Mishra V, Majumder CB, Agarwal VK (2010) Zn(II) ion biosorption onto surface of eucalyptus leaf biomass: isotherm, kinetic, and mechanistic modeling. Clean Soil Air Water 38:1062–1073

    Article  Google Scholar 

  • Mishra V, Balomajumder C, Agarwal VK (2012) Kinetics, mechanistic and thermodynamics of Zn (II) ion sorption: a modeling approach. CLEAN–Soil, Air, Water 40(7) 718–727

    Article  Google Scholar 

  • Mishra V, Balomajumder C, Agarwal VK (2013) Design and optimization of simultaneous biosorption and bioaccumulation (SBB) system: a potential method for removal of Zn (II) ion from liquid phase. Desalin Water Treat 51(16-18):3179–3188

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479

    Article  Google Scholar 

  • Mondal P, Balomajumder C, Mohanty B (2007) A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: effects of shaking time, pH and temperature. J Hazard Mater 144:420–426

    Article  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2008) Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. J Hazard Mater 153:588–599

    Article  Google Scholar 

  • Morsen, Rehm HJ (1990) Degradation of phenol by a defined mixed culture immobilized by adsorption on activated carbon and sintered glass. Appl Microbiol Biotechnol 33:206–212

    Article  Google Scholar 

  • Mosbah R, Sahmoune MN (2013) Biosorption of heavy metals by Streptomyces species—an overview, Cent. Eur J Chem 11:1412–1422

    Google Scholar 

  • Naiya TK (2009) Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J Colloid Interf Sci 333:14–26

    Article  Google Scholar 

  • Navarro P, Alguacil FJ (2002) Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy 66 (1–3) 101–105

    Article  Google Scholar 

  • Nouri I, Ghodbane O, Hamdaoui M, Chiha (2007) Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J Hazard Mater 149:115–125

    Article  Google Scholar 

  • Ozdemir S, Kilinc E, Poli A, Nicolus B, Guen K (2009) Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophillic bacteria, Geobacillus oebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. strombolensis: equilibrium, kinetic and thermodynamic studies. Chem Eng J 152:195–206

    Article  Google Scholar 

  • Pandey PK, Choubey S, Verma Y, Pandey M, Chandrashekhar K (2009) Biosorptive removal of arsenic from drinking water. Bioresource Technol 100:634–637

    Article  Google Scholar 

  • Parida KM, Mallick S, Mohapatra BK, Vibhuti N, Misra (2004) Studies on manganese-nodule leached residues: 1. Physicochemical characterization and its adsorption behavior toward Ni2+ in aqueous system. J Colloid Interf Sci 277:48–54

    Article  Google Scholar 

  • Pehlivan E, Arslan G (2007) Removal of metal ions using lignite in aqueous solution—low cost biosorbents. Fuel Process Technol 88:99–106

    Article  Google Scholar 

  • Pokhrel D, Viraraghavan T (2006) Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res 40:549–552

    Article  Google Scholar 

  • Pokhrel D, Viraraghavan T (2007) Arsenic removal from an aqueous solution by modified A. niger biomass: batch kinetic and isotherm studies. J Hazard Mater 150:818–825

    Article  Google Scholar 

  • Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2001) In: Radovic LR (ed), Chemistry and physics of carbon, vol 27. Marcel Dekker, New York, pp 1–66

    Google Scholar 

  • Ranjan D, Talat M, Hasan SH (2009) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166:1050–1059

    Article  Google Scholar 

  • Ren Y, Li N, Feng J, Luan T, Wen Q, Li Z, Zhang M (2012) Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4. J Colloid Interf Sci 367:415–421

    Article  Google Scholar 

  • Romero-Gonźalez J, Peralta-Videa JR, Rodrıˇıguez E, Ramirez SL, Gardea-Torresdey JL (2005) Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J Chem Thermodyn 37:343–347

    Article  Google Scholar 

  • Roy P, Mondal NK, Das K (2014) Modeling of the adsorptive removal of arsenic: a statistical approach, J. Environ. Chem Eng 2:585–597

    Google Scholar 

  • Sag Y, Kutsal T (1995) Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics. Chem Eng J 60:181–188

    Google Scholar 

  • Sarkar S, Blaney LM, Gupta A, Ghosh D, Sengupta AK (2008) Arsenic removal from groundwater and its safe containment in a rural environment: validation of a sustainable approach. Environ Sci Technol 42:4168–4273

    Article  Google Scholar 

  • Sarwat F, Qader SAU, Aman A, Ahmed N (2008) Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci 4(6):379–386

    Article  Google Scholar 

  • Schneider IAH, Rubio J, Smith RW (2001) Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? Int J Miner Process 62:111–120

    Article  Google Scholar 

  • Seki H, Suzuki A, Maruyama H (2005) Biosorption of chromium (VI) and arsenic (V) onto methylated yeast biomass. J Colloid Interf Sci 281:261–266

    Article  Google Scholar 

  • Sengupta P, Balomajumder C (2014) Potential of corn husk leaves for the co-removal of phenol and cyanide from waste water using simultaneous adsorption and biodegradation. IJRET 3:700–707

    Google Scholar 

  • Shao L, Ren Z, Zhang G, Chen L (2012) Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal, Mater. Chem Phys 135:16–24

    Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    Article  Google Scholar 

  • Shivaji S, Suresh K, Chaturvedi P, Dube S, Sengupta S (2005) Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. Int J Syst Evol Micr 55:1123–1127

    Article  Google Scholar 

  • Sidiras D, Batzias F, Schroeder E, Ranjan R, M. Tsapatsis M (2011) Dye adsorption on autohydrolyzed pine sawdust in batch and fixed-bed systems. Chem Eng J 171(3):883–896

    Article  Google Scholar 

  • Singha B, Das SK (2011) Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies. Colloids Surf B 84:221–232

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Sposito G (1986) Distinguishing adsorption from surface precipitation, In: Davis JA, Hayes KF (Eds.), Geochemical processes at mineral surfaces, ACS Symposium Series 323, pp 217–228

  • Srivastava VC, Swamy MM, Mall ID, Prasad IB, Mishra IM (2006) Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloid Surf A 272:89–104

    Article  Google Scholar 

  • Vijayaraghavan, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  Google Scholar 

  • Warrens MJ (2008) On similarity coefficients for 2 × 2 tables and correction for chance. Psychometrika 73:487–502

    Article  Google Scholar 

  • Wen Y, Ma J, Chen J, Shen C, Li H, Liu W (2015) Carbonaceous sulfur-containing chitosan–Fe(III): a novel adsorbent for efficient removal of copper (II) from water. Chem Eng J 259:372–380

    Article  Google Scholar 

  • WHO (1993) Guidelines for drinking water quality, World Health Organization, Geneva, p 41

  • Wong PK, So CM (1993) Copper accumulation by a strain of Pseudomonas-putida. Microbios 73:113–121

    Google Scholar 

  • Xu Y, Schwartz FW, Traina SJ (1994) Sorption of Zn2 + and Cd2 + on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480

    Article  Google Scholar 

  • Wu K, Liu R, Li T, Liu H, Peng J, Qu J (2013) Removal of arsenic(III) from aqueous solution using a low-cost by product in Fe-removal plants—Fe-based backwashing sludge. Chem Eng J 226:393–401

  • Yadav KP, Tyagi BS (1987) Fly-ash for the treatment of Cd-rich effluent. Environ Technol Lett 8:225–234

    Article  Google Scholar 

  • Yu X, Tong S, Ge M, Zuo J, Cao C, Song W (2013) One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J Mater Chem A 1:959–965

    Article  Google Scholar 

  • Zakaria ZA, Zakaria Z, Surif S, Ahmad WA (2007) Biological detoxification of Cr (VI) using wood-husk immobilized Acinetobacter haemolyticus. J Hazard Mater 148(1):164–171

    Article  Google Scholar 

  • Zawierucha I, Kozlowski C Malina G (2016) Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams. Environ Sci Process Impacts 18:429–444

    Article  Google Scholar 

  • Zhang X, Wang X (2015) Adsorption and desorption of Nickel(II) ions from aqueous solution by a lignocellulose/ montmorillonite nanocomposite. Water Mod Lignocellulose. doi:10.1371/journal.pone.0117077

    Google Scholar 

  • Zhang Y, Yang M, Dou XM, He H Wang DS (2005) As(V) adsorption on an Fe–Ce bimetal oxide adsorbent: role of surface properties. Environ Sci Technol 39:7246–7253

    Article  Google Scholar 

  • Zhang GS, Qu JH, Liu HJ, Liu RP, Li GT (2007) Removal mechanism of As(III) by a novel Fe–Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Technol 41:4613–4619

    Article  Google Scholar 

  • Zhang G, Liu H, Liu R, Qu J (2009) Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. J Hazard Mater 168:820–825

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks to Indian Institute of Technology, Roorkee for providing necessary facilities and to Ministry of Human Resource Development, Government of India for financial support. We have read BioMed Central’s guidance on competing interests and have included a statement indicating that none of the authors have any competing interests in the manuscript. The thoughtful comments by an anonymous reviewer are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Podder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1227 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podder, M.S., Majumder, C.B. Simultaneous biosorption and bioaccumulation: a novel technique for the efficient removal of arsenic. Sustain. Water Resour. Manag. 3, 357–389 (2017). https://doi.org/10.1007/s40899-017-0103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40899-017-0103-x

Keywords

Navigation