Skip to main content
Log in

Numerical Evaluation of Pile Length, Lateral Bulging and Encasement Length: A Comparative Study on Ordinary and Encased Granular Piles

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

Granular piles, either ordinary or encased with geosynthetic materials are being extensively used as one of the ground improvement techniques, depending on the strength of the adjoining soil. The optimum granular pile (GP) length is still a matter of research, even though the approach is widely established in the literature. In the present study, a thorough and detailed parametric analysis has been carried out to ascertain the optimum length for ordinary and encased granular piles using a 2D axisymmetric finite element model. The soil behaviour has been modelled with the linearly elastic perfectly plastic Mohr–Coulomb failure criterion constitutive model. The parameters considered in this study are area replacement ratio, encasement stiffness, soil properties, infill material properties, and crust layer thickness. The findings revealed that the parameters with the greatest influence on the optimum length are the area replacement ratio, encasement stiffness, surrounding soil strength properties, and friction angle of the infill material. For encased granular piles, the optimum length was often found to be longer than ordinary granular piles. It was found that the optimum length for ordinary and encased GP ranges between 0.8–2.12 and 1–2.75 times of footing diameter (D), respectively. Through this study, an effort has also been made to investigate how the aforementioned parameters affect the radial bulging of the end-bearing GP. The upper section of 0.5–1.5D showed excessive bulging in each case. Additionally, the optimum encasement length was determined, and it was found that increasing the encasement length beyond 1.5D results in minimal improvement. Furthermore, a multiple regression analysis was employed to establish the correlation between the optimum length of GP and potential influencing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability

The authors affirm that the data supporting the findings of this study can be found within the article. Furthermore, upon a reasonable request, the corresponding author is willing to provide the raw data that underlie the findings of this study.

Abbreviations

GP:

Granular pile

OGP:

Ordinary granular pile

EGP:

Encased granular pile

H :

Soil bed thickness

L :

Granular pile length

L op :

Optimum granular pile length

L e :

Encasement length

L e,op :

Optimum encasement length

D :

Footing diameter

χ :

Normalized depth

χ :

L/D

λ :

Improvement factor

v:

Poisson’s ratio

ϒsat :

Saturated unit weight

k o :

Coefficient of earth pressure at rest

c s :

Soil cohesion

ϕ s/c :

Internal frictional angle soil/granular pile

Ψ s /c :

Dilation angle soil/granular pile

E s/c :

Soil/granular pile stiffness

a r :

Area replacement ratio

d c :

GP diameter

t g :

Granular bed thickness

J g :

Encasement stiffness

References

  1. Barksdale RD, Bachus RC (1983) Design and construction of stone columns, vol. I (No. FHWA/RD-83/026; SCEGIT-83-104). Turner-Fairbank Highway Research Center

  2. Ayadat T (2022) Geotechnical performance of encapsulated and stabilized stone columns in a collapsible soil. Int J Geomech 22(6):04022057

    Article  Google Scholar 

  3. Hajiazizi M, Nasiri M (2018) Experimental and numerical study of earth slope reinforcement using ordinary and rigid stone columns. Int J Min GeoEng 52(1):23–30

    Google Scholar 

  4. Pham TA, Dias D (2021) 3D numerical study of the performance of geosynthetic-reinforced and pile-supported embankments. Soils Found 61(5):1319–1342

    Article  Google Scholar 

  5. Shahu JT, Madhav MR, Hayashi S (2000) Analysis of soft ground-granular pile-granular mat system. Comput Geotech 27(1):45–62

    Article  Google Scholar 

  6. Schiosser F, Juran Y (1979) Parametres de conception pour sols artificiellement ameliores. In: Vol. 5 of Comptes Rendus clu 7eme Congres Europeen de Brighton. British Geotechnical Society, Brighton, UK, pp 227–252

  7. Ambily AP, Gandhi SR (2007) Behavior of stone columns based on experimental and FEM analysis. J Geotech Geoenviron Eng 133(4):405–415

    Article  Google Scholar 

  8. Chen JF, Li LY, Zhang Z, Zhang X, Xu C, Rajesh S, Feng SZ (2021) Centrifuge modeling of geosynthetic-encased stone column-supported embankment over soft clay. Geotext Geomembr 49(1):210–221

    Article  Google Scholar 

  9. Dar LA, Shah MY (2023) Numerical study on the seismic behaviour of embankments on stone column-reinforced soft soils. Transp Infrastruct Geotechnol 10(2):239–258

    Article  Google Scholar 

  10. Hughes JMO, Withers NJ, Greenwood DA (1975) A field trial of the reinforcing effect of a stone column in soil. Geotechnique 25(1):31–44

    Article  Google Scholar 

  11. McKenna JM, Eyre WA, Wolstenholme DR (1975) Performance of an embankment supported by stone columns in soft ground. Geotechnique 25(1):51–59

    Article  Google Scholar 

  12. McKelvey D, Sivakumar V, Bell A, Graham J (2004) Modelling vibrated stone columns in soft clay. Proc Inst Civ Eng Geotech Eng 157(3):137–149

    Article  Google Scholar 

  13. Wehr J (2006) The undrained cohesion of the soil as criterion for the column installation with a depth vibrator. In: Proceedings of the international symposium on vibratory pile driving and deep soil vibratory compaction. TRANSVIB, Paris, pp 157–162

  14. Almeida MSS, Hosseinpour I, Riccio M (2013) Performance of a geosynthetic-encased column (GEC) in soft ground: numerical and analytical studies. Geosynth Int 20(4):252–262

    Article  Google Scholar 

  15. Fattah MY, Zabar BS, Hassan HA (2016) Experimental analysis of embankment on ordinary and encased stone columns. Int J Geomech 16(4):04015102

    Article  Google Scholar 

  16. Miranda M, Da Costa A (2016) Laboratory analysis of encased stone columns. Geotext Geomembr 44(3):269–277

    Article  Google Scholar 

  17. Dash SK, Bora MC (2013) Influence of geosynthetic encasement on the performance of stone columns floating in soft clay. Can Geotech J 50(7):754–765

    Article  Google Scholar 

  18. Al-Taie ET, Al-Kalali HH, Fattah MY (2019) Evaluation of settlement and bearing capacity of embankment on soft soil with reinforced geogrids. Int J Eng Res Technol (Ahmedabad) 8(6):99–103

    Google Scholar 

  19. Hasan M, Samadhiya NK (2017) Performance of geosynthetic-reinforced granular piles in soft clays: model tests and numerical analysis. Comput Geotech 87:178–187

    Article  Google Scholar 

  20. Rezaei MM, Lajevardi SH, Saba H, Ghalandarzadeh A, Zeighami E (2019) Laboratory study on single stone columns reinforced with steel bars and discs. Int J Geosynth Ground Eng 5:1–14

    Article  Google Scholar 

  21. Thakur A, Rawat S, Gupta AK (2021) Experimental and numerical investigation of load carrying capacity of vertically and horizontally reinforced floating stone column group. Geotech Geol Eng 39:3003–3018

    Article  Google Scholar 

  22. Dutta S, Padade AH, Mandal JN (2012) Experimental study on natural bamboo geogrid encased stone column. In: Proc. 5th ARC on Geosynth., Geosynth. Asia-2012, pp 417–426

  23. Basu P, Samadhiya NK, De Dalal SS (2018) An experimental study on random fiber mixed granular pile. Int J Geotech Eng 12(1):1–12

    Article  Google Scholar 

  24. Babu MRD, Dheerendra SR, Nayak S, Majeed JA (2010) Load settlement behavior of stone columns with circumferential nails. In: Indian geotechnical conference, pp 579–82

  25. Fattah MY, Shlash KT, Al-Waily MJ (2013) Experimental evaluation of stress concentration ratio of model stone columns strengthened by additives. Int J Phys Model Geotech 13(3):79–98

    Google Scholar 

  26. Kang B, Wang J, Zhou Y, Huang S (2023) Study on bearing capacity and failure mode of multi-layer-encased geosynthetic-encased stone column under dynamic and static loading. Sustainability 15(6):5205

    Article  Google Scholar 

  27. Mohamadi Merse M, Hosseinpour I, Payan M, Jamshidi Chenari R, Mohapatra SR (2023) Shear strength behavior of soft clay reinforced with ordinary and geotextile-encased granular columns. Int J Geosynth Ground Eng 9(6):79. https://doi.org/10.1007/s40891-023-00492-5

    Article  Google Scholar 

  28. Shahu JT, Kumar S, Bhowmik R (2023) Ground improvement for transportation infrastructure: experimental investigations on cyclic behavior of a group of granular columns. Int J Geomech 23(3):04022309

    Article  Google Scholar 

  29. Pradeep NM, Kumar S, Shukla SK (2023) Evaluation of strength behavior of aggregates mixed with tire chips in granular piles. Iran J Sci Technol Trans Civ Eng 2023:1–16

    Google Scholar 

  30. Pradeep N, Kumar S (2023) Soft soil improvement with encased granular piles composed of aggregates and tire chips mixture: experimental and numerical studies. Iran J Sci Technol Trans Civ Eng 2023:1–25

    Google Scholar 

  31. Ng KS, Tan SA (2015) Settlement prediction of stone column group. Int J Geosynth Ground Eng 1:1–13

    Article  Google Scholar 

  32. Sivakumar V, McKelvey D, Graham J, Hughes D (2004) Triaxial tests on model sand columns in clay. Can Geotech J 41(2):299–312

    Article  Google Scholar 

  33. Muir Wood D, Hu W, Nash DF (2000) Group effects in stone column foundations: model tests. Geotechnique 50(6):689–698

    Article  Google Scholar 

  34. Narasimha Rao S, Prasad YVSN, Hanumanta Rao V (1992) Use of stone columns in soft marine clays. In: Proceedings of the 45th Canadian geotechnical conference, Toronto, Ont, vol 9

  35. Miranda M, Fernández-Ruiz J, Castro J (2021) Critical length of encased stone columns. Geotext Geomembr 49(5):1312–1323

    Article  Google Scholar 

  36. Najjar SS, Sadek S, Maakaroun T (2010) Effect of sand columns on the undrained load response of soft clays. J Geotech Geoenviron Eng 136(9):1263–1277

    Article  Google Scholar 

  37. Remadna A, Benmebarek S, Benmebarek N (2020) Numerical analyses of the optimum length for stone column reinforced foundation. Int J Geosynth Ground Eng 6:1–12

    Article  Google Scholar 

  38. Debnath P, Dey AK (2017) Bearing capacity of geogrid reinforced sand over encased stone columns in soft clay. Geotext Geomembr 45(6):653–664

    Article  Google Scholar 

  39. Black JA, Sivakumar V, Bell A (2011) The settlement performance of stone column foundations. Géotechnique 61(11):909–922

    Article  Google Scholar 

  40. Tan SA, Ng KS, Sun J (2014) Column group analyses for stone column reinforced foundation. In: From soil behavior fundamentals to innovations in geotechnical engineering: honoring Roy E. Olson, pp 597–608

  41. Malarvizhi SN (2007) Comparative study on the behavior of encased stone column and conventional stone column. Soils Found 47(5):873–885

    Article  Google Scholar 

  42. Al-Ani W, Grizi A, Wanatowski D (2021, November) Settlement analysis of column-like elements. In: Proceedings of the 20th international conference on soil mechanics and geotechnical engineering. International society for soil mechanics and geotechnical engineering.

  43. Hamzh A, Mohamad H, Bin Yusof MF (2022) The effect of stone column geometry on soft soil bearing capacity. Int J Geotech Eng 16(2):200–210

    Article  Google Scholar 

  44. Balaam NP, Brown PT (1977) Settlement analysis of soft clay reinforced with granular piles. In: Proc. Fifth Asian Conf. Soil Eng. Bangkok, Thailand, no. 81–92 (1978)

  45. Castro J (2017) Modeling stone columns. Materials 10(7):782

    Article  MathSciNet  Google Scholar 

  46. Choobbasti AJ, Pichka H (2014) Improvement of soft clay using installation of geosynthetic-encased stone columns: numerical study. Arab J Geosci 7:597–607

    Article  Google Scholar 

  47. Jaky J (1944) The coefficient of earth pressure at rest. J Soc Hung Archit Eng 1944:1

    Google Scholar 

  48. Dar LA, Shah MY (2021) Three dimensional numerical study on behavior of geosynthetic encased stone column placed in soft soil. Geotech Geol Eng 39(3):1901–1922

    Article  Google Scholar 

  49. Hasan M, Samadhiya NK (2016) Experimental and numerical analysis of geosynthetic-reinforced floating granular piles in soft clays. Int J Geosynth Ground Eng 2:1–13

    Article  Google Scholar 

  50. Kadhim ST, Parsons RL, Han J (2018) Three-dimensional numerical analysis of individual geotextile-encased sand columns with surrounding loose sand. Geotext Geomembr 46(6):836–847

    Article  Google Scholar 

  51. Lo SR, Zhang R, Mak J (2010) Geosynthetic-encased stone columns in soft clay: a numerical study. Geotext Geomembr 28(3):292–302

    Article  Google Scholar 

  52. Murugesan S, Rajagopal K (2006) Geosynthetic-encased stone columns: numerical evaluation. Geotext Geomembr 24(6):349–358

    Article  Google Scholar 

  53. Tandel YK, Solanki CH, Desai AK (2013) 3D FE analysis of an embankment construction on GRSC and proposal of a design method. Int Schol Res Not 2013:1

    Google Scholar 

  54. Ng KS, Tan SA (2014) Design and analyses of floating stone columns. Soils Found 54(3):478–487

    Article  Google Scholar 

  55. Debbabi IE, Saddek RM, Rashid ASA, Muhammed AS (2020) Numerical modeling of encased stone columns supporting embankments on sabkha soil. Civ Eng J 6(8):1593–1608

    Article  Google Scholar 

  56. Hughes JMO, Withers NJ (1974) Reinforcing of soft cohesive soils with stone columns: 18F, 9R. Ground Engng. V7, N3, MAY, 1974, P42–49. Int J Rock Mech Min Sci Geomech Abstracts 11(11):A234

    Article  Google Scholar 

  57. Aslani M, Nazariafshar J, Ganjian N (2019) Experimental study on shear strength of cohesive soils reinforced with stone columns. Geotech Geol Eng 37:2165–2188

    Article  Google Scholar 

  58. Boumekik NEI, Labed M, Mellas M, Mabrouki A (2021) Optimization of the ultimate bearing capacity of reinforced soft soils through the concept of the critical length of stone columns. Civ Eng J 7(9):1472–1487

    Article  Google Scholar 

  59. Basack S, Indraratna B, Rujikiatkamjorn C (2016) Modeling the performance of stone column–reinforced soft ground under static and cyclic loads. J Geotech Geoenviron Eng 142(2):04015067

    Article  Google Scholar 

  60. Ng KS (2018) Numerical study on bearing capacity of single stone column. Int J GeoEng 9:1–10

    Google Scholar 

  61. Mugahed Sakr M, Azzam WR, Mohamed MK (2022) Behaviour of encased stone columns in soft clay. J Eng Res 6(3):71–75

    Google Scholar 

  62. Keykhosropur L, Soroush A, Imam R (2012) 3D numerical analyses of geosynthetic encased stone columns. Geotext Geomembr 35:61–68

    Article  Google Scholar 

  63. Walton G, Diederichs MS, Alejano LR, Arzúa J (2014) Verification of a laboratory-based dilation model for in situ conditions using continuum models. J Rock Mech Geotech Eng 6(6):522–534

    Article  Google Scholar 

  64. Mitchell JK (1981) Soil improvement-state of the art report. In: Proc., 11th Int. Conf. on SMFE, vol 4, pp 509–565

  65. Gu M, Zhao M, Zhang L, Han J (2016) Effects of geogrid encasement on lateral and vertical deformations of stone columns in model tests. Geosynth Int 23(2):100–112

    Article  Google Scholar 

  66. Yoo C, Lee D (2012) Performance of geogrid-encased stone columns in soft ground: full-scale load tests. Geosynth Int 19(6):480–490

    Article  Google Scholar 

  67. Yoo C (2010) Performance of geosynthetic-encased stone columns in embankment construction: numerical investigation. J Geotech Geoenviron Eng 136(8):1148–1160

    Article  Google Scholar 

  68. Yoo C (2015) Settlement behavior of embankment on geosynthetic-encased stone column installed soft ground–a numerical investigation. Geotext Geomembr 43(6):484–492

    Article  Google Scholar 

  69. Muzammil SP, Varghese RM, Joseph J (2018) Numerical simulation of the response of geosynthetic encased stone columns under oil storage tank. Int J Geosynth Ground Eng 4:1–12

    Article  Google Scholar 

  70. Xu Z, Zhang L, Zhou S (2021) Influence of encasement length and geosynthetic stiffness on the performance of stone column: 3D DEM-FDM coupled numerical investigation. Comput Geotech 132:103993

    Article  Google Scholar 

  71. Gholaminejad A, Mahboubi A, Noorzad A (2020) Encased stone columns: coupled continuum—discrete modelling and observations. Geosynth Int 27(6):581–592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Shaid Yousuf performed the numerical modelling, analysed the data, and wrote the paper. N K Samadhiya reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shaid Yousuf.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interests regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousuf, S., Samadhiya, N.K. Numerical Evaluation of Pile Length, Lateral Bulging and Encasement Length: A Comparative Study on Ordinary and Encased Granular Piles. Int. J. of Geosynth. and Ground Eng. 10, 48 (2024). https://doi.org/10.1007/s40891-024-00556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-024-00556-0

Keywords

Navigation