Skip to main content
Log in

Use of Microbially Induced Calcite Precipitation for Soil Improvement in Compacted Clays

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

In line with the recent promotion of biocementation as an environmentally friendly ground improvement method, this study presents an investigation into microbially induced calcite precipitation (MICP) as a method of improving the engineering properties of soft clay. Bacillus pasteurii bacterium in vegetative cell and bacterial spore forms were used to induce MICP in clay specimens. Untreated and treated clay specimens were tested for their mechanical properties and microstructures through unconfined compression (UC) tests, free–free resonance (FFR) tests, X-ray diffraction (XRD) tests, and scanning electron microscopy with energy dispersive X-ray (SEM/EDX) tests. Results showed that both vegetative cells and bacterial spores can effectively enhance the strength and modulus of clays by inducing MICP to generate calcite crystals. Clays treated with vegetative cells exhibited earlier improvements in their strength than clays treated with bacterial spores due to earlier activity availability; however, the clays treated with bacterial spores exhibited greater strength improvements in the long term. Bacterial spores may also prove more convenient to use in geotechnical engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Surarak C, Likitlersuang S, Wanatowski D, Balasubramaniam A, Oh E, Guan H (2012) Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils Found 52(4):682–697. https://doi.org/10.1016/j.sandf.2012.07.009

    Article  Google Scholar 

  2. Likitlersuang S, Surarak C, Wanatowski D, Oh E, Balasubramaniam AS (2013) Geotechnical parameters from pressuremeter tests for MRT blue line extension in Bangkok. Geomech Eng 5(2):99–118. https://doi.org/10.12989/gae.2013.5.2.099

    Article  Google Scholar 

  3. Likitlersuang S, Teachavorasinskun S, Surarak C, Oh E, Balasubramaniam AS (2013) Small strain stiffness and stiffness degradation curve of Bangkok clays. Soils Found 53(4):498–509. https://doi.org/10.1016/j.sandf.2013.06.003

    Article  Google Scholar 

  4. Likitlersuang S, Surarak C, Suwansawat S, Wanatowski D, Oh E, Balasubramaniam AS (2014) Simplified finite-element modelling for tunnelling-induced settlements. Geotech Res 1(4):133–152. https://doi.org/10.1680/gr.14.00016

    Article  Google Scholar 

  5. Chompoorat T, Likitlersuang S (2016) Assessment of shrinkage characteristic in blended cement and fly ash admixed soft clay. Jpn Geotech Soc Spec Publ 2(6):311–316. https://doi.org/10.3208/jgssp.THA-01

    Article  Google Scholar 

  6. Julphunthong P, Thongdetsri T, Chompoorat T (2018) Stabilisation of soft Bangkok clay using Portland cement and calcium sulfoaluminate-belite cement. Key Eng Mater 775:582–588

    Article  Google Scholar 

  7. Ratananikom W, Likitlersuang S, Yimsiri S (2013) An investigation of anisotropic elastic parameters of Bangkok clay from vertical and horizontal cut specimens. Geomech Geoeng 8(1):15–27. https://doi.org/10.1080/17486025.2012.726746

    Article  Google Scholar 

  8. Yimsiri S, Ratananikom W, Fukuda F, Likitlersuang S (2013) Undrained strength-deformation characteristics of Bangkok Clay under general stress condition. Geomech Eng 5(5):419–445. https://doi.org/10.12989/gae.2013.5.5.419

    Article  Google Scholar 

  9. Likitlersuang S, Pholkainuwatra P, Chompoorat T, Keawsawasvong S (2018) Numerical modelling of railway embankments for high-speed train constructed on soft soil. J GeoEng 13(3):149–159. https://doi.org/10.6310/jog.201809_13(3).6

    Article  Google Scholar 

  10. Likitlersuang S, Plengsiri P, Mase LZ, Tanapalungkorn W (2020) Influence of spatial variability of ground on seismic response analysis: a case study of Bangkok subsoils. Bull Eng Geol Environ 79(1):39–51. https://doi.org/10.1007/s10064-019-01560-9

    Article  Google Scholar 

  11. Nguyen TS, Likitlersuang S (2021) Influence of the spatial variability of shear strength parameters on deep excavation analysis: a case study of a Bangkok underground MRT station. Int J Geomech 21(2):04020248. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001914

    Article  Google Scholar 

  12. Mase LZ, Likitlersuang S, Tobita T (2020) Verification of liquefaction potential during the strong earthquake at the border of Thailand-Myanmar. J Earthq Eng. https://doi.org/10.1080/13632469.2020.1751346

    Article  Google Scholar 

  13. Mase LZ, Likitlersuang S, Tobita T, Chiprakaikeow S, Sorlump S (2020) Local site investigation of liquefied soils caused by earthquake in Northern Thailand. J Earthq Eng 24(7):1181–1204. https://doi.org/10.1080/13632469.2018.1469441

    Article  Google Scholar 

  14. Sukkarak R, Tanapalungkorn W, Likitlersuang S, Ueda K (2021) Liquefaction analysis of sandy soil during strong earthquake in Northern Thailand. Soils Found 61(5):1302–1318. https://doi.org/10.1016/j.sandf.2021.07.003

    Article  Google Scholar 

  15. Chompoorat T, Likitlersuang S, Sitthiawiruth S, Komolvilas V, Jamsawang P, Jongpradist P (2021) Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine. Geomech Eng 25(2):143–157. https://doi.org/10.12989/gae.2021.25.2.143

    Article  Google Scholar 

  16. Bergado DT, Balasubramaniam AS, Fannin RJ, Holtz RD (2002) Prefabricated vertical drains (PVDs) in soft Bangkok clay: a case study of the new Bangkok International Airport project. Can Geotech J 39(2):304–315. https://doi.org/10.1139/t01-100

    Article  Google Scholar 

  17. Bergado DT, Chaiyaput S, Artidteang S, Nguyen NT (2020) Microstructures within and outside the smear zones for soft clay improvement using PVD only, vacuum-PVD, thermo-PVD and thermo-vacuum-PVD. Geotext Geomembr 48(6):828–843. https://doi.org/10.1016/j.geotexmem.2020.07.003

    Article  Google Scholar 

  18. Chompoorat T, Maikhun T, Likitlersuang S (2019) Cement improved lake bed sedimentary soil for road construction. Proc Inst Civ Eng Ground Improv 172(3):192–201. https://doi.org/10.1680/jgrim.18.00076

    Article  Google Scholar 

  19. Chompoorat T, Thanawong K, Likitlersuang S (2021) Swell-shrink behaviour of cement with fly ash-stabilised lakebed sediment. Bull Eng Geol Environ 80(3):2617–2628. https://doi.org/10.1007/s10064-020-02069-2

    Article  Google Scholar 

  20. Chompoorat T, Thepumong T, Taesinlapachai S, Likitlersuang S (2021) Repurposing of stabilised dredged lakebed sediment in road base construction. J Soils Sediments 21:2719–2730. https://doi.org/10.1007/s11368-021-02974-3

    Article  Google Scholar 

  21. Jongvivatsakul P, Ramdit T, Ngo TP, Likitlersuang S (2018) Experimental investigation on mechanical properties of geosynthetic cementitious composite mat (GCCM). Constr Build Mater 166:956–965. https://doi.org/10.1016/j.conbuildmat.2018.01.185

    Article  Google Scholar 

  22. Ngo TP, Likitlersuang S, Takahashi A (2019) Performance of a geosynthetic cementitious composite mat for stabilising sandy slopes. Geosynth Int 26(3):309–319. https://doi.org/10.1680/jgein.19.00020

    Article  Google Scholar 

  23. Chompoorat T, Likitlersuang S, Jongvivatsakul P (2018) The performance of controlled low-strength material base supporting a high-volume asphalt pavement. KSCE J Civ Eng 22(6):2055–2063. https://doi.org/10.1007/s12205-018-1527-z

    Article  Google Scholar 

  24. Chompoorat T, Likitlersuang S, Jongvivatsakul P (2019) Engineering properties of controlled low-strength material (CLSM) as an alternative fill material. In: The 16th Asian regional conference on soil mechanics and geotechnical engineering (16ARC). Taipei, Taiwan: Taipei International Convention Center

  25. Chompoorat T, Thepumong T, Nuaklong P, Jongvivatsakul P, Likitlersuang S (2021) Alkali-activated controlled low-strength material utilizing high-calcium fly ash and steel slag for use as pavement materials. J Mater Civ Eng 33(8):04021178. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003798

    Article  Google Scholar 

  26. Leelarungroj K, Likitlersuang S, Chompoorat T, Janjaroen D (2018) Leaching mechanisms of heavy metals from fly ash stabilised soils. Waste Manag Res 36(7):616–623. https://doi.org/10.1177/0734242X18775494

    Article  Google Scholar 

  27. Dontriros S, Likitlersuang S, Janjaroen D (2020) Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash (MSWI FA): effect of acid-base solutions. Waste Manag 101(1):44–53. https://doi.org/10.1016/j.wasman.2019.09.033

    Article  Google Scholar 

  28. Eab KH, Takhashi A, Likitlersuang S (2014) Centrifuge modelling of root-reinforced soil slope subjected to rainfall infiltration. Géotech Lett 4(3):211–216. https://doi.org/10.1680/geolett.14.00029

    Article  Google Scholar 

  29. Eab KH, Likitlersuang S, Takahashi A (2015) Laboratory and modelling investigation of root-reinforced system for slope stabilization. Soils Found 55(5):1270–1281. https://doi.org/10.1016/j.sandf.2015.09.025

    Article  Google Scholar 

  30. Phan TN, Likitlersuang S, Kamchoom V, Leung AK (2021) Root biomechanical properties of Chrysopogon zizanioides and Chrysopogon nemoralis for soil reinforcement and slope stabilisation. Land Degrad Dev. https://doi.org/10.1002/ldr.4063

    Article  Google Scholar 

  31. Nguyen TS, Likitlersuang S, Jotisankasa A (2019) Influence of the spatial variability of the root cohesion on a slope-scale stability model: a case study of residual soil slope in Thailand. Bull Eng Geol Environ 78(5):3337–3351. https://doi.org/10.1007/s10064-018-1380-9

    Article  Google Scholar 

  32. Nguyen TS, Likitlersuang S, Jotisankasa A (2020) Stability analysis of vegetated residual soil slope in Thailand under rainfall conditions. Environ Geotech 7(5):338–349. https://doi.org/10.1680/jenge.17.00025

    Article  Google Scholar 

  33. Leknoi U, Likitlersuang S (2020) Good practice and lesson learned in promoting vetiver as solution for slope stabilisation and erosion control in Thailand. Land Use Policy 99:105008. https://doi.org/10.1016/j.landusepol.2020.105008

    Article  Google Scholar 

  34. Arpajirakul S, Pungrasmi W, Likitlersuang S (2021) Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Constr Build Mater 282:122722. https://doi.org/10.1016/j.conbuildmat.2021.122722

    Article  Google Scholar 

  35. Jongvivatsakul P, Janprasit K, Nuaklong P, Pungrasmi W, Likitlersuang S (2019) Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Constr Build Mater 212:737–744. https://doi.org/10.1016/j.conbuildmat.2019.04.035

    Article  Google Scholar 

  36. Intarasoontron J, Pungrasmi W, Nuaklong P, Jongvivatsakul P, Likitlersuang S (2021) Comparing performances of MICP bacterial vegetative cell and microencapsulated bacterial spore methods on concrete crack healing. Constr Build Mater 302:124227. https://doi.org/10.1016/j.conbuildmat.2021.124227

    Article  Google Scholar 

  37. Lambert SE, Randall DG (2019) Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine. Water Res 160:158–166. https://doi.org/10.1016/j.watres.2019.05.069

    Article  Google Scholar 

  38. Chen P, Zheng H, Xu H, Gao YX, Ding XQ, Ma ML (2019) Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity. PLoS ONE 14(10):e0223900. https://doi.org/10.1371/journal.pone.0223900

    Article  Google Scholar 

  39. Achal V, Mukherjee A (2015) A review of microbial precipitation for sustainable construction. Constr Build Mater 93:1224–1235. https://doi.org/10.1016/j.conbuildmat.2015.04.051

    Article  Google Scholar 

  40. Rahman MM, Hora RN, Ahenkorah I, Beecham S, Karim MR, Iqbal A (2020) State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability. https://doi.org/10.3390/su12156281

    Article  Google Scholar 

  41. Omoregie AI, Palombo EA, Nissom PM (2020) Bioprecipitation of calcium carbonate mediated by ureolysis: a review. Environ Eng Res 26(6):200379–200370. https://doi.org/10.4491/eer.2020.379

    Article  Google Scholar 

  42. Al-Qabany A, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001. https://doi.org/10.1061/(asce)gt.1943-5606.0000666

    Article  Google Scholar 

  43. Zhao Q, Li L, Li C, Li M, Amini F, Zhang H (2014) Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533

    Article  Google Scholar 

  44. Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571. https://doi.org/10.1016/s0038-0717(99)00082-6

    Article  Google Scholar 

  45. Yasuhara H, Neupane D, Hayashi K, Okamura M (2012) Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils Found 52(3):539–549. https://doi.org/10.1016/j.sandf.2012.05.01

    Article  Google Scholar 

  46. Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50(1):81–90. https://doi.org/10.1139/cgj-2012-0023

    Article  Google Scholar 

  47. Dhami NK, Reddy MS, Mukherjee A (2016) Significant indicators for biomineralisation in sand of varying grain sizes. Constr Build Mater 104:198–207. https://doi.org/10.1016/j.conbuildmat.2015.12.023

    Article  Google Scholar 

  48. Salifu E, MacLachlan E, Iyer KR, Knapp CW, Tarantino A (2016) Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation. Eng Geol 201:96–105. https://doi.org/10.1016/j.enggeo.2015.12.027

    Article  Google Scholar 

  49. Pungrasmi W, Intarasoontron J, Jongvivatsakul P, Likitlersuang S (2019) Evaluation of microencapsulation techniques for MICP bacterial spores applied in self-healing concrete. Sci Rep 9:12484. https://doi.org/10.1038/s41598-019-49002-6

    Article  Google Scholar 

  50. ASTM D 2166/D 2166M (2016) Standard test method for unconfined compressive strength of cohesive soil. ASTM International, West Conshohocken. https://doi.org/10.1520/D2166_D2166M-16

    Book  Google Scholar 

  51. ASTM C597 (2016) Standard test method for pulse velocity through concrete. ASTM International, West Conshohocken. https://doi.org/10.1520/C0597-16

    Book  Google Scholar 

  52. ASTM D 1557 (2012) Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2700 kN-m/m3)). ASTM International, West Conshohocken. https://doi.org/10.1520/D1557-07

    Book  Google Scholar 

  53. Chompoorat T (2012) Dynamic properties of cement treated clay. In: Proceedings of the seventh Asian young geotechnical engineers conference (7AYGEC), Tokushima, Japan, pp 273–279

  54. Jamsawang P, Charoensil S, Namjan T, Jongpradist P, Likitlersuang S (2020) Mechanical and microstructural properties of dredged sediments treated with cement and fly ash for use as road materials. Road Mater Pavement Des. https://doi.org/10.1080/14680629.2020.1772349

    Article  Google Scholar 

  55. Cardoso R, Pires I, Duarte SOD, Monteiro GA (2018) Effects of clay’s chemical interactions on biocementation. Appl Clay Sci 156:96–103. https://doi.org/10.1016/j.clay.2018.01.035

    Article  Google Scholar 

  56. Liu S, Wen K, Amini F, Li L (2020) Investigation of Nonwoven geotextiles for full contact flexible mould used in preparation of MICP-treated geomaterial. Int J Geosynth Ground Eng. https://doi.org/10.1007/s40891-020-00197-z

    Article  Google Scholar 

  57. Xiao JZ, Wei YQ, Cai H, Wang ZW, Yang T, Wang QH, Wu SF (2020) Microbial-induced carbonate precipitation for strengthening soft clay. Adv Mater Sci Eng. https://doi.org/10.1155/2020/8140724

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Council of Thailand (NRCT): NRCT5-RSA63001-05; and the Ratchadapisek Sompoch Endowment Fund (2021), Chulalongkorn University (764002-ENV). The second author (S. Arpajirakul) acknowledges the C2F Fund for PhD scholarship, Chulalongkorn University, Thailand. The fourth author (T. Chompoorat) acknowledges the annual government statement of expenditure fund from the University of Phayao.

Author information

Authors and Affiliations

Authors

Contributions

BP: formal analysis, Investigation. SA: methodology, writing—original draft. WP: resources, supervision. TC: validation, visualization, formal analysis, data curation, writing—original draft. SL: conceptualization, resources, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Suched Likitlersuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punnoi, B., Arpajirakul, S., Pungrasmi, W. et al. Use of Microbially Induced Calcite Precipitation for Soil Improvement in Compacted Clays. Int. J. of Geosynth. and Ground Eng. 7, 86 (2021). https://doi.org/10.1007/s40891-021-00327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-021-00327-1

Keywords

Navigation