Skip to main content
Log in

Instability of Boreholes with Slurry

  • Technical Note
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

Drilling slurry has been widely used in the construction of wet-processed borehole excavation, and the stability of such an excavation is of great concern to engineers. In this short note, the problem of borehole stability is revisited using the finite element limit analysis. The study sets out to establish an undrained correlation between stability number and depth ratio of a borehole excavation under axisymmetric condition. To understand several observed phenomena, the effects of slurry pressure and the increasing undrained strength with depth are investigated. The overall aim of the note is to produce practical solutions in the form of design equations for engineer in the field to evaluate the borehole stability using a simple factor of safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jung C, Ceglarek R, Clauvelin T, Ayeldeen M, Kim D (2020) Deep soil mixing in Sabkha Soils for foundation support in United Arab Emirates. Int J Geosynth Ground Eng 6(1):3

    Article  Google Scholar 

  2. Du Z, Shahin MA, El Naggar H (2021) Design of Ram-compacted bearing base piling foundations by simple numerical modelling approach and artificial intelligence technique. Int J Geosynth Ground Eng 7(2):41

    Article  Google Scholar 

  3. Munaga T, Gonavaram KK (2021) Influence of stratified soil system on behavior of laterally loaded pile groups: an experimental study. Int J Geosynth Ground Eng 7:18

    Article  Google Scholar 

  4. Nash KL, Jones GK (1963) The support of trenches using fluid mud. In: Proceedings of the symposium on grouts and drilling muds in engineering practice. Butterworths, London, pp 177–180

  5. Morgenstern N, Amir-Tahmasseb I (1965) The stability of a slurry trench in cohesionless soils. Géotechnique 15(4):387–395

    Article  Google Scholar 

  6. Filz GM, Adams T, Davidson RR (2004) Stability of long trenches in sand supported by bentonite-water slurry. J Geotech Geoenviron Eng 130(9):915–921

    Article  Google Scholar 

  7. Tsai JS, Chang JC (1996) Three-dimensional stability analysis for slurry-filled trench wall in cohesionless soil. Can Geotech J 33(5):798–808

    Article  Google Scholar 

  8. Fox PJ (2004) Analytical solutions for stability of slurry trench. J Geotech Geoenviron Eng 130(7):749–758

    Article  Google Scholar 

  9. Li YC, Pan Q, Cleall PJ, Chen YM, Ke H (2013) Stability analysis of slurry trenches in similar layered soils. J Geotech Geoenviron Eng 139(12):2104–2109

    Article  Google Scholar 

  10. Zhang F, Gao Y, Leshchinsky D, Zhu D, Lei G (2016) Three-dimensional stability of slurrysupported trenches: end effects. Comput Geotech 74:174–187

    Article  Google Scholar 

  11. Saadi R, Baheddi M, Ferhoune N (2017) Analytical approach of the arching dual effect describing the stability of slurry-wall trenches in cohesionless soil. Int J Geomech 17(10):04017081

    Article  Google Scholar 

  12. Oblozinsky P, Ugai K, Katagiri M, Saitoh K, Ishii T, Masuda T et al (2001) A design method for slurry trench wall stability in sandy ground based on the elastoplastic FEM. Comput Geotech 28(2):145–159

    Article  Google Scholar 

  13. Shalev E, Bauer SJ, Homel MA, Antoun TH, Herbold EB, Vorobiev OY, Levin H, Oren G, Lyakhovsky V (2021) Borehole breakout modeling in arkose and granite rocks. Geomech Geophys Geo-Energy Geo-Resour 7(1):15

    Article  Google Scholar 

  14. Han CY, Wang JH, Xia XH, Chen JJ (2015) Limit analysis for local and overall stability of a slurry trench in cohesive soil. Int J Geomech 15(5):06014026

    Article  Google Scholar 

  15. Zhang J, Gao Y, Zhang F, Wan Y, Liu M (2018) Influence of anisotropy and non- homogeneity on stability analysis of slurry-support trenches. Int J Geomech 18(5):04018028

    Article  Google Scholar 

  16. Qin CB (2019) Determination of slurry density required for stability of slurry-supported trenches excavated in partially submerged soils. Comput Geotech 116:103212

    Article  Google Scholar 

  17. Wang H, Huang M (2020) Upper bound stability analysis of slurry-supported trenches in layered soils. Comput Geotech 122:103554

    Article  Google Scholar 

  18. Sloan SW (2013) Geotechnical stability analysis. Géotechnique 63(7):531–571

    Article  Google Scholar 

  19. Li AJ, Merifield RS, Lin HD, Lyamin AV (2014) Trench stability under bentonite pressure in purely cohesive clay. Int J Geomech 14(1):151–167

    Article  Google Scholar 

  20. Khatri VN, Kumar J (2010) Stability of an unsupported vertical circular excavation in clays under undrained condition. Comput Geotech 37(3):419–424

    Article  Google Scholar 

  21. Kumar J, Chakraborty D (2012) Stability numbers for an unsupported vertical circular excavation in c-f soil. Comput Geotech 39:79–84

    Article  Google Scholar 

  22. Kumar J, Chakraborty M, Sahoo JP (2014) Stability of unsupported vertical circular excavations. J Geotech Geoenviron Eng 140(7):04014028

    Article  Google Scholar 

  23. Keawsawasvong S, Ukritchon B (2017) Stability of unsupported conical excavations in non-homogeneous clays. Comput Geotech 81:125–136

    Article  Google Scholar 

  24. Ukritchon B, Keawsawasvong S (2018) A new design equation for drained stability of conical slopes in cohesive-frictional soils. J Rock Mech Geotech Eng 10(2):358–366

    Article  Google Scholar 

  25. Yodsomjai W, Keawsawasvong S, Thongchom C, Lawongkerd J (2021) Undrained stability of unsupported conical slopes in two-layered clays. Innov Infrastruct Solut 6:15

    Article  Google Scholar 

  26. Yodsomjai W, Keawsawasvong S, Likitlersuang S (2021) Stability of unsupported conical slopes in Hoek-Brown rock masses. Transp Infrastruct Geotech 8:279–295. https://doi.org/10.1007/s40515-020-00137-4

    Article  Google Scholar 

  27. Yodsomjai W, Keawsawasvong S, Senjuntichai T (2021) Undrained stability of unsupported conical slopes in anisotropic clays based on anisotropic undrained shear failure criterion. Transp Infrastruct Geotech. https://doi.org/10.1007/s40515-021-00153-y

    Article  Google Scholar 

  28. Ukritchon B, Keawsawasvong S (2020) Undrained lower bound solutions for end bearing capacity of shallow circular piles in non-homogeneous and anisotropic clays. Int J Numer Anal Meth Geomech 44(5):596–632

    Article  Google Scholar 

  29. Ukritchon B, Keawsawasvong S (2019) Design equations of uplift capacity of circular piles in sands. Appl Ocean Res 90:101844

    Article  Google Scholar 

  30. Ukritchon B, Keawsawasvong S (2018) Undrained lateral capacity of rectangular piles under a general loading direction and full flow mechanism. KSCE J Civ Eng 22(7):2256–2265

    Article  Google Scholar 

  31. Keawsawasvong S, Ukritchon B (2017) Undrained lateral capacity of I-shaped concrete piles. Songklanakarin J Sci Technol 39(6):751–758

    Google Scholar 

  32. Ukritchon B, Keawsawasvong S (2017) Error in Ito and Matsui’s limit equilibrium solution of lateral force on a row of stabilizing piles. J Geotech Geoenviron Eng ASCE 143(9):02817004

    Article  Google Scholar 

  33. Keawsawasvong S, Ukritchon B (2016) Ultimate lateral capacity of two dimensional plane strain rectangular pile in clay. Geomech Eng 11(2):235–251

    Article  Google Scholar 

  34. Yodsomjai W, Keawsawasvong S, Lai VQ (2021) Limit analysis solutions for bearing capacity of ring foundations on rocks using Hoek–Brown failure criterion. Int J Geosynth Ground Eng 7:29

    Article  Google Scholar 

  35. Keawsawasvong S, Lai VQ (2021) End bearing capacity factor for annular foundations embedded in clay considering the effect of the adhesion factor. Int J Geosynth Ground Eng 7:15

    Article  Google Scholar 

  36. Shiau J, Pather S, Ayers R (2006) Developing physical models for geotechnical teaching and research. In: Proceedings of 6th IC physical modelling in geotechnics, pp 157–162

  37. Shiau J, Sams M, Lamb B (2016) Introducing advanced topics in geotechnical engineering teaching—tunnel modelling. Int J GEOMATE 10(1):1698–1705

    Google Scholar 

  38. Shiau J, Lamb B, Sams M (2016) The use of sinkhole models in advanced geotechnical engineering teaching. Int J GEOMATE 10(2):1718–1724

    Google Scholar 

  39. Shiau J, Hassan MM (2020) Undrained stability of active and passive trapdoors. Geotech Res 7(1):40–48

    Article  Google Scholar 

  40. Shiau J, Al-Asadi F (2020) Determination of critical tunnel heading pressures using stability factors. Comput Geotech 119:103345

    Article  Google Scholar 

  41. Shiau J, Al-Asadi F (2020) Two-dimensional tunnel heading stability factors Fc, Fs and Fr. Tunn Underground Space Technol 97: https://doi.org/10.1016/j.tust.2020.103293

    Article  Google Scholar 

  42. Shiau J, Al-Asadi F (2020) Three-dimensional analysis of circular tunnel headings using Broms and Bennermarks’ original stability number. Int J Geomech 20(7):06020015

    Article  Google Scholar 

  43. Butterfield R (1999) Dimensional analysis for geotechnical engineers. Géotechnique 49(3):357–366

    Article  Google Scholar 

  44. OptumCE 2019, OptumG2. Copenhagen, Denmark: Optum Computational Engineering. See https://www.optumce.com/. Accessed 10 Aug 2019

  45. Ciria H, Peraire J, Bonet J (2008) Mesh adaptive computation of upper and lower bounds in limit analysis. Int J Numer Methods Eng 75:899–944

    Article  MathSciNet  Google Scholar 

  46. Sauer T (2014) Numerical analysis. Pearson Education Limited, London

    Google Scholar 

  47. Thasnanipan N, Aye Z, Submaneewong C, Teparaksa W (2002) Performance of wet-process bored piles constructed with polymer-based slurry in Bangkok subsoil. Int Deep Found Congr 143–157. https://doi.org/10.1061/40601(256)11

Download references

Acknowledgements

This research was supported by Thammasat University Research Unit in Structural and Foundation Engineering, Thammasat University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Shiau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keawsawasvong, S., Shiau, J. Instability of Boreholes with Slurry. Int. J. of Geosynth. and Ground Eng. 7, 81 (2021). https://doi.org/10.1007/s40891-021-00326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-021-00326-2

Keywords

Navigation