Skip to main content
Log in

A Three-Dimensional Discrete Element Modeling to Cyclic Response of Geosynthetic-Encased Stone Column

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

A three-dimensional discrete element modeling of cyclic behavior of geosynthetic-encased stone column (GESC) has been recently conducted to better understand the interaction between geosynthetic encasement and stone aggregates on a microscopic scale. Comparisons between numerical results and laboratory observations indicate a good accuracy of the modeling. Different responses of GESC like deformation characteristics (e.g., axial compression and radial expansion), stress state (e.g., stress and lateral pressure coefficient within the column) are monitored during the simulations for understanding the mechanics of the reinforcement mechanism. To decipher the mechanism of the macro behavior under cyclic loading, the variation of property parameters of stone aggregates on a micro-scale (i.e., porosity and coordination number) within four stages of a loading cycle has been investigated. The stiffness of GESC is found to be prominently improved under cyclic loading as a result of the densification of stone aggregates and increased confinement provided by the geosynthetic encasement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Castro J, Karstunen M (2010) Numerical simulations of stone column installation. Can Geotech J 47(10):1127–1138

    Article  Google Scholar 

  2. Bouassida M, Carter J (2014) Optimization of design of column-reinforced foundations. Int J Geomech 14(6):04014031

    Article  Google Scholar 

  3. Shahu JT, Reddy YR (2014) Estimating long-term settlement of floating stone column groups. Can Geotech J 51(7):770–781

    Article  Google Scholar 

  4. Basack S, Indraratna B, Rujikiatkamjorn C, Siahaan F (2017) Modeling the stone column behavior in soft ground with special emphasis on lateral deformation. J Geotech Geoenviron Eng 143(6):04017016

    Article  Google Scholar 

  5. Salem ZB, Frikha W, Bouassida M (2017) Effects of densification and stiffening on liquefaction risk of reinforced soil by stone columns. J Geotech Geoenviron Eng 143(10):06017014

    Article  Google Scholar 

  6. Mckenna JR, Eyre WA, Wolstenholme DR (1975) Performance of an embankment supported by stone columns in soft ground. Geotechnique 25(1):51–59

    Article  Google Scholar 

  7. Rajagopal K, Krishnaswamy NR, Latha GM (1999) Behaviour of sand confined with single and multiple geocells. Geotext Geomembr 17(3):171–184

    Article  Google Scholar 

  8. Wu CS, Hong YS (2009) Laboratory tests on geosynthetic-encapsulated sand columns. Geotext Geomembr 27(2):107–120

    Article  MathSciNet  Google Scholar 

  9. Miranda M, Costa AD (2016) Laboratory analysis of encased stone columns. Geotext Geomembr 44(3):269–277

    Article  Google Scholar 

  10. Trunk U, Heerten G, Paul A, Reuter E (2004) Geogrid wrapped vibro stone columns. Proc Third Eur Geosynthetics Conf Geotech Eng Geosynth Munich Ger 1:289–294

    Google Scholar 

  11. Gniel J, Bouazza A (2010) Construction of geogrid encased stone columns: a new proposal based on laboratory testing. Geotext Geomembr 28(1):108–118

    Article  Google Scholar 

  12. Chen JF, Wang XT, Xue JF, Zeng Y, Feng SZ (2018) Uniaxial compression behavior of geotextile encased stone columns. Geotext Geomembr 46(3):277–283

    Article  Google Scholar 

  13. Ardakani A, Gholampoor N, Bayat M, Bayat M (2018) Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns. Struct Eng Mech 65(1):81–89

    Google Scholar 

  14. Yoo C, Abbas Q (2019) Performance of geosynthetic-encased stone column-improved soft clay under vertical cyclic loading. Soils Found 59(6):1875–1890

    Article  Google Scholar 

  15. Yoo C, Abbas Q (2020) Laboratory investigation of the behavior of a geosynthetic encased stone column in sand under cyclic loading. Geotext Geomembr 48(4):432–442

    Article  Google Scholar 

  16. Zhang L, Xu ZY, Zhou S (2020) Vertical cyclic loading response of geosynthetic-encased stone column in soft clay. Geotext Geomembr 48(6):897–911

    Article  Google Scholar 

  17. Murugesan S, Rajagopal K (2006) Geosynthetic-encased stone columns: numerical evaluation. Geotext Geomembr 24(6):349–358

    Article  Google Scholar 

  18. Yoo C (2010) Performance of geosynthetic-encased stone columns in embankment construction: numerical investigation. J Geotech Geoenviron Eng 136(8):1148–1160

    Article  Google Scholar 

  19. Keykhosropur L, Soroush A, Imam R (2012) 3D numerical analyses of geosynthetic encased stone columns. Geotext Geomembr 35(12):61–68

    Article  Google Scholar 

  20. Hasan M, Samadhiya NK (2017) Performance of geosynthetic-reinforced granular piles in soft clays: model tests and numerical analysis. Comput Geotech 87:178–187

    Article  Google Scholar 

  21. Indraratna B, Ngo NT, Rujikiatkamjorn C, Sloan SW (2015) Coupled discrete element-finite difference method for analysing the load-deformation behavior of a single stone column in soft soil. Comput Geotech 63(1):267–278

    Article  Google Scholar 

  22. Ngo NT, Tung TM (2016) Coupled discrete-continuum method for studying load deformation of a stone column reinforces rail track embankments. Proc Eng 142:138–144

    Google Scholar 

  23. Gu MX, Han J, Zhao MH (2017) Three-Dimensional discrete-element method analysis of stresses and deformations of a single geogrid-encased stone column. Int J Geomech 17(9):04017070

    Article  Google Scholar 

  24. Gu MX, Han J, Zhao MH (2017) Three-dimensional DEM analysis of single geogrid-encased stone columns under unconfined compression: a parametric study. Acta Geotech 12(3):559–572

    Article  Google Scholar 

  25. Gu MX, Han J, Zhao MH (2020) Three-dimensional DEM analysis of axially loaded geogrid-encased stone column in clay bed. Int J Geomech 20(3):04019180

    Article  Google Scholar 

  26. Tan X, Zhao M, Chen W (2018) Numerical simulation of a single stone column in soft clay using the discrete-element method. Int J Geomech 18(12):04018176

    Article  Google Scholar 

  27. Tan X, Feng L, Hu Z, Zhao M (2020) A DEM-FDM coupled numerical study on the deformation and failure process of the isolated stone column in soft soil. Bull Eng Geol Env 79:1693–1705

    Article  Google Scholar 

  28. Tan X, Hu Z, Chen C, Zhao M (2021) 3D DEM-FDM coupled analysis of the behavior of an isolated geogrid-encased stone column under axial loading. J Geotech Geoenviron Eng 47(6):04021028

    Article  Google Scholar 

  29. Gholaminejad A, Mahboubi A, Noorzad A (2019) Combined DEM-FDM modelling of encased stone column. E3S Web of Conferences 92:16012

  30. Xu ZY, Zhang L, Zhou S (2021) Influence of encasement length and geosynthetic stiffness on the performance of stone column: 3D DEM-FDM coupled numerical investigation. Comput Geotech 132:103993

    Article  Google Scholar 

  31. Xu ZY, Zhang L, Peng BC, Zhou S (2021) DEM-FDM numerical investigation on load transfer mechanism of GESC-supported embankment. Comput Geotechn 138:104321

    Article  Google Scholar 

  32. Ali K, Shahu JT, Sharma KG (2014) Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement. Geosynth Int 21(2):103–118

    Article  Google Scholar 

  33. Debnath P, Dey AK (2017) Bearing capacity of geogrid reinforced sand over encased stone columns in soft clay. Geotext Geomembr 45(6):653–664

    Article  Google Scholar 

  34. ASTM (2014) Standard test method for flexural rigidity of geogrids, geotextiles and related products. D7748, West Conshohocken

  35. ASTM (2015) Standard test method for determining tensile properties of geogrids by the single or multi-rib tensile method. D6637, West Conshohocken

  36. Zhao MH, Heng S, Zheng Y (2018) Numerical simulation on behavior of pile foundations under cyclic axial loads. J Central South Univ 24(12):2906–2913

    Article  Google Scholar 

  37. Zhuang Y, Li SB (2015) Three-dimensional finite element analysis of arching in a piled embankment under traffic loading. Arab J Geosci 8(10):7751–7762

    Article  Google Scholar 

  38. Buckley R, Jardine R, Kontoe S, Parker D, Schroeder F (2017) Ageing and cyclic behaviour of axially loaded piles driven in chalk. Géotechnique 68(2):1–16

    Google Scholar 

  39. Tsuha CHC, Foray PY, Jardine RJ, Yang ZX, Silva M, Rimoy S (2012) Behaviour of displacement piles in sand under cyclic axial loading. Soils Found 52(3):393–410

    Article  Google Scholar 

  40. Lu M, Mcdowell GR (2010) Discrete element modelling of railway ballast under monotonic and cyclic triaxial loading. Geotechnique 60(6):459–467

    Article  Google Scholar 

  41. Bhandari A, Jie H (2010) Investigation of geotextile–soil interaction under a cyclic vertical load using the discrete element method. Geotext Geomembr 28(1):33–43

    Article  Google Scholar 

  42. Ngo NT, Indraratna B, Rujikiatkamjorn C, Biabani MM (2015) Experimental and discrete element modeling of geocell-stabilized subballast subjected to cyclic loading. J Geotechn Geoenviron Eng 142(4):04015100

    Article  Google Scholar 

  43. Wu CS, Hong YS (2014) A simplified approach for evaluating the bearing performance of encased granular columns. Geotext Geomembr 42(4):339–347

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (NSFC Nos. 51978255 and 52078205), the Natural Science Foundation of Hunan Province (No. 2020JJ3013), the Postgraduate Scientific Research Innovation Project of Hunan Province, China (No. QL20210108), and the Basal Research Fund Support by Hunan University.

Author information

Authors and Affiliations

Authors

Contributions

LZ: conceptualization, methodology, and writing—review and editing. ZX: methodology and writing—original draft. HZ: formal analysis and writing—review and editing. SZ: formal analysis and writing—review and editing.

Corresponding author

Correspondence to Zeyu Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xu, Z., Zhao, H. et al. A Three-Dimensional Discrete Element Modeling to Cyclic Response of Geosynthetic-Encased Stone Column. Int. J. of Geosynth. and Ground Eng. 7, 75 (2021). https://doi.org/10.1007/s40891-021-00319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-021-00319-1

Keywords

Navigation