Skip to main content
Log in

Numerical Study with Field Data for Macroscopic Continuum Modelling of Indian Traffic

  • Original Article
  • Published:
Transportation in Developing Economies Aims and scope Submit manuscript

Abstract

Heterogeneous traffic as observed in several south Asian countries is characterized by complex interactions of widely varying vehicle types that do not follow lanes and with smaller vehicles filling any gaps available. This paper discusses on four main components of macroscopic simulation of traffic flow in the Indian traffic context. One of the prime component, namely the traffic flow model, is discussed in detail with respect to the continuum modelling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arasan VT, Dhivya G (2008) Measuring heterogeneous traffic density. In: International conference on sustainable urban transport and environment. World Academy of Science, Engineering, and Technology, pp 342–346

  2. Arasan VT, Dhivya G (2010) Simulation of highly heterogeneous traffic flow characteristics. In: 24th European conference on modeling and simulation. Kuala Lumbur, Malasia, pp 60–86

  3. Aw A, Rascle M (2000) Resurrection of “Second Order” models of traffic flow. SIAM J Appl Math 60:916–938

    Article  MathSciNet  MATH  Google Scholar 

  4. Bagnerini P, Rascle M (2003) A multi-class homogenized hyperbolic model of traffic flow. SIAM J Math Anal 35:949–973

    Article  MathSciNet  MATH  Google Scholar 

  5. Chanut S, Buisson C (2003) A macroscopic model and its numerical solution for a two flow mixed traffic with different speeds and lengths. Transp Res Rec 1852:209–219

    Article  Google Scholar 

  6. Colombo RM (2002) A 2\(\times\)2 hyperbolic traffic flow model. Math Comput Modell 35:683–688

    Article  MathSciNet  MATH  Google Scholar 

  7. Del Castillo JM, Benitez FG (1995) On the functional form of the speed-density reationship-I: general theory. Transp Res Part B 29:373–389

    Article  Google Scholar 

  8. Gavage SB, Colombo RM (2003) An n-populations model for traffic flow. Eur J Appl Math 14(5):587–612

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenberg JM, Klar A, Rascle M (2003) Congestion on multilane highways. SIAM J Appl Math 63(3):813–818

    MathSciNet  MATH  Google Scholar 

  10. Gupta A, Dhiman I (2014) Analysis of a continuum traffic flow model with non-lane based system. Int J Mod Phys C 25(10):1450045(25)

    Article  Google Scholar 

  11. Gupta A, Katiyar V (2007) A new multi-class continuum model of traffic flow. Transportmetrica 3:73–85

    Article  Google Scholar 

  12. Helbing D, Trieber M (1999) Numerical simulation of macroscopic traffic equations. Comput Sci Eng 1(5):89–98

    Article  Google Scholar 

  13. Helbing D, Hennecke A, Shvetsov V, Trieber M (2001) Master: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model. Transp Res Part B 35(2):183–211

    Article  Google Scholar 

  14. Holland EN, Woods WA (1997) A continuum model for the dispersion of traffic on two-lane roads. Transp Res Part B 31(6):473–485

    Article  Google Scholar 

  15. Hoogendoorn SP (1999) Multiclass continuum modelling of multilane traffic flow. PhD thesis, Delft University

  16. Jiang R, Wu QS (2003) Study on propagation speed of small disturbance from a car-following approach. Transp Res Part B 37(1):85–99

    Article  Google Scholar 

  17. Jiang R, Wu QS (2004) Extended speed gradient model for mixed traffic. Transp Res Rec 1883:78–84

    Article  Google Scholar 

  18. Jiang R, Wu QS, Zhu ZJ (2002) A new continuum model for traffic flow and numerical tests. Transp Res Part B 36:405–419

    Article  Google Scholar 

  19. Steven JG (2008) The Nlopt non-linear optimization package. http://ab-initio.mit.edu

  20. Kuhne R, Michalopoulos P (2001) Continuum flow models, revised monograph on traffic flow theory: chapter 5. Technical report, FHWA

  21. Lan WL, Chiou CY, Lin SZ, Hsu CC (2010) Cellular automaton simulations for mixed traffic with erratic motorcycles’ behaviours. Phys A 389(10):2077–2089

    Article  Google Scholar 

  22. Leclercq L, Laval JA (2009) Traffic and Granular Flow ’07. Springer, Berlin

    Google Scholar 

  23. Leveque JR (2002) Numerical methods for conservation laws. Birkhauser, Heidelberg

    MATH  Google Scholar 

  24. Li X, Lu H (2010) An extension of LWR model considering slope and heterogeneous drivers. In: International conference on computer and information science, pp 1236–1240

  25. Lighthill MJ, Whitham GB (1955) On kinematic waves II. A theory of traffic flow on long crowed roads. Proc R Soc A 229:281–345

    Article  MATH  Google Scholar 

  26. Logghe S (2003) Dynamic modelling of heterogeneous vehicular traffic. PhD thesis, KULeuven, Belgium

  27. Logghe S, Immers LH (2003) Heterogeneous traffic flow modelling with the LWR model using passenger car equivalents. In: 10th world congress on ITS, Madrid

  28. Mallikarjuna C, Ramachadra Rao K (2009) Cellular automata model for heterogeneous traffic. J Adv Transp 43(3):321–345

    Article  Google Scholar 

  29. Mallikarjuna C, Ramachandra Rao K (2006) Area occupancy characteristics of heterogeneous traffic. Transportmetrica 2:223–236

    Article  Google Scholar 

  30. Mathew T, Munigety C, Bajpai A (2013) Strip-based approach for the simulation of mixed traffic conditions. J Comput Civ Eng 29(5):751–802

    Google Scholar 

  31. Meng Q, Weng J (2011) An improved cellular automata model for heterogeneous work zone traffic. Transp Res Part C Emerg Technol 19(6):1263–1275

    Article  Google Scholar 

  32. Mesemmer A, Papageorgiou M (1990) Metanet: a macroscopic simulation program for motorway networks. Traffic Eng Control 31:466–470

    Google Scholar 

  33. Michalopoulos PG, Yi P, Lyrintzis AS (1993) Development of an improved high-order continuum traffic flow model. Transp Res Rec 1365:125–132

    Google Scholar 

  34. Mohan R, Ramadurai G (2013) Heterogeneous traffic flow modelling using macroscopic continuum model. In: Procedia-social and behavioral sciences

  35. Mohan R, Ramadurai G (2017) Heterogeneous traffic flow modelling using second-order macroscopic continuum model. Phys Lett A 381:115–123

    Article  MATH  Google Scholar 

  36. Munjal PK, Hsu YS, Lawrence RL (1971) Analysis and validation of lane drop effects on multilane freeways. Transp Res 5(4):257–266

    Article  Google Scholar 

  37. Nair R, Mahmassani HS, Hooks EM (2011) A porous flow approach to modelling heterogeneous traffic in disordered system. Transp Res Part B 45(9):1331–1345

    Article  Google Scholar 

  38. Ngoduy D (2006) Macroscopic discontinuity modeling for multi-class multi-lane traffic flow operations. PhD thesis, Delft University of Technology

  39. Ngoduy D (2011) Multi-class first-order traffic model using stochastic fundamental diagrams. Transportmetrica 7(2):111–125

    Article  Google Scholar 

  40. Ngoduy D, Liu R (2007) Multiclass frist-order simulation model to expalin non-linear traffic phenomena. Phys A 385(2):667–682

    Article  Google Scholar 

  41. Ngoduy D, Maher MJ (2012) Calibration of second order traffic models using continuous cross-enntropy method. Transp Res Part C 24:102–121

    Article  Google Scholar 

  42. Ngoduy D, Hoogendoorn SP, Van Zuylen HJ (2004) Cross-comparison of numerical schemes for macroscopic traffic flow models. Transp Res Rec 1876:52–61

    Article  Google Scholar 

  43. Pares C (2008) Hyperbolic problems: theory, numerics, applications. Springer, Berlin

    Google Scholar 

  44. Payne HJ (1971) Models of freeway traffic and control. Simulation Councils Inc., La Jolla

    Google Scholar 

  45. Payne HJ (1979) FREEFLO: a macroscopic simualtion model of freeway traffic. Transp Res Rec 722:68–77

    Google Scholar 

  46. Puspita D (2007) Heterogeneous motorized traffic flow modelling using cellular automata. PhD thesis, Dublin City University

  47. Richards PI (1956) Shockwaves on the highway. Oper Res 4(1):42–51

    Article  MATH  Google Scholar 

  48. Ross P (1988) Traffic dynamics. Transp Res Part B 22:421–425

    Article  MathSciNet  Google Scholar 

  49. Tampere CMJ, van Arem B, Hoogendoorn SP (2003) Gas kinetic traffic flow modelling including continuous driver behavior models. Transp Res Rec 1852:231–238

    Article  Google Scholar 

  50. Tang CF, Jiang R, Wu QS, Wiwathanapataphee B, Hu YH (2007a) Mixed traffic flow in anisotropic continuum model. Transp Res Rec 1999:13–22

    Article  Google Scholar 

  51. Tang CF, Jiang R, Wu QS (2007b) Extended speed gradient model for traffic flow on two-lane freeways. Chin Phys 16:1570–1575

    Article  Google Scholar 

  52. Tang TQ, Huang HJ, Zhao SG, Shang HY (2009) A new dynamic model for heterogeneous traffic flow. Phys Lett A 373:2461–2466

    Article  MATH  Google Scholar 

  53. Vasik J, Ruskin JH (2012) Cellular automata simulation of traffic including cars and bicycles. Phys A 391(8):2720–2729

    Article  Google Scholar 

  54. van Wageningen-Kessels F (2013) Multi-class continuum traffic flow models: analysis and simulation methods. PhD thesis, Delft University of Technology

  55. Wang H, Li J, Chen Q, Ni D (2009) Speed-density relationship: from deterministic to stochastic. In: 88th annual meeting of transportation research board

  56. Wong GCK, Wong SC (2002) A multi-class traffic flow model: an extension of LWR model with heterogeneous drivers. Transp Res Part A 36(9):763–848

    Google Scholar 

  57. Zhang HM (2002) A non-equilibrium traffic model devoid of gas-like behavior. Transp Res Part B 36:275–290

    Article  Google Scholar 

  58. Zhang HM, Jin WL (2002) A kinematic wave traffic flow model for mixed traffic. Transp Res Rec 1802:197–204

    Article  Google Scholar 

  59. Zhu Z, Zhang G, Wu T (2003) Numerical analysis of freeway traffic flow dynamics under multi-class drivers. Transp Res Rec 1852:201–208

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Urban Development, Government of India, for sponsoring the Center of Excellence in Urban Transport at Indian Institute of Technology (IIT), Madras that enabled this research work. All findings and opinions in the paper are by the authors and do not necessarily reflect the views of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranju Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, R., Ramadurai, G. Numerical Study with Field Data for Macroscopic Continuum Modelling of Indian Traffic. Transp. in Dev. Econ. 5, 16 (2019). https://doi.org/10.1007/s40890-019-0081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40890-019-0081-9

Keywords

Navigation